AD-RL61 715 AN RSSESSMENT OF RDA’S SUITABILITY IN GEMERAL PURPOSE
’ PROGRAMNING APPLICATIONSCU) RIR FORCE INST OF rec 3
MRIGHT-PATTERSON AFE ON SCHOOL OF SVST
UNCLASSIFIED L D CAVITT ET AL. SEP 8 F/8 9/2




3.2
= 122

' 2
2

- N =
5 ll< e
v 25 s, pee

(FPFEEEE
(B |

N
o

e
e ——
e —
—
e —
&
.
-
=

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963 - A




P A AR S 2 e e
....... AN i Mt Sudi St B bR Al A M A o St Shd el adl Mad Shalt sk aadh Mo e

-

AD-A161 715

AN ASSESSMENT OF ADA'S SUITABILITY
IN GENERAL PURPOSE
PROGRAMMING APPLICATIONS

THESIS

Larry D. Cavitt Anthony A. Panek
Captain, USAF Captain, USAF

AFIT/GLM/LSM/355-52

DEPARTMENT OF THE AIR FORCE
AR UNIVERSITY ‘ ©

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
DISTRIBUTION STATEMENT A

A d bli 1
D iemibunes. Dol 8a 11 25 oV4&




AFIT/GLM/LSM/85S8-62

AN ASSESSMENT OF ADA'S SUITABILITY
IN GENERAL PURPQSE
PROGRAMMING APPLICATIONS

THESIS
Larry D. Cavitt Anthony A. Panek
Captain, USAF Captain, USAF
AFIT/GLM/LSM/355-62 D I l( :

CLECTE
NOV 27 1985 .,

D

Approved for public release; distribution unlimited




P

ACRATA M A it Rl Dediied S 'S v S ot Pl TR y————"

The contents of the document are technically accurate, and
no sensitive items, detrimental ideas, or deleterious
information are contained therein. Furthermore, the views
expressed in the document are those of the author(s) and do
not necessarily reflect the views of the School of Systems
and Logistics, the Air University, the United States Air
Force, or the Department of Defense.

By
D:.t out ‘I

Auciac iy Codes
%_7_ Aol d_.J} or
Dist Znecial

A~

T YT




T T Y VIV VI W Wy v wlw, wy

AFIT/GLM/LSM/855~-62

M am e an am a0 40

AN ASSESSMENT OF ADA'S SUITABILITY IN

. GENERAL PURPOSE PROGRAMMING APPLICATIONS

THESIS

Presented to the Faculty of the School
of Systems and Logistics
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Logistics Management

Larry D. Cavitt Anthony A. Panek
Captain, USAF Captain, USAF

September 1985

Approved for public release; distribution unlimited




—————T

Acknowledgements

While the collective assistance of many individuals at
the Air Force Institute of Technology contributed to this
reseach, the authors wish to specifically acknowledge those
who made major contributions.

We would like to thank our advisor Captain Patricia
Lawlis for her guidance and assistance during this research
effort, who encouraged and did not let us stray from our
research objectives.

We would also like to thank Dr. Charles Richard for
the assistance he gave us while learning the Ada language.

Finally, we wish to thank our wives for their
continuing patience, ancouragement and understanding (except
during late Friday-night sessions at the Fly-Wright) which

inspired us to complete this research project on time.

ii




Paiee e 4 -— -

Table of Contents

Page

AcknowledgemMentS. v « v o o o o o o s o o o 4 e o o o o o ii
List Of FIQUIES v v ¢ v v o & o o o o o o o o o o o o o Viii

LiSt Of Tables . . . . L] . . . . . - . . . ] . . ] L] 3 . ix

o

List Of ACIONYMNS « « v & o+ o« o s o o s « o o o o o o o o

o
(o2

AbStraCt. . 3 . 3 . . [ . . . . . . . . . . L] L] . L] . . .
I. OverView . . . . . . . . . . . . . . . . L] L] . . [ .

IntroductionN. +« « o ¢ o ¢ o o o s o 6 o o o o o
Prodliam 3tatement o v v 4« o o o s o 6 e o o o o o
Justification o & ¢ o 4 o o o o & o o o o o o o o
SCOD2 4 4 v 4 & 4 4 o o o o o o o ¢ o o o o o o
Limitations . ¢ v o ¢ o ¢ e o o o o o o o s o o o
Research Objectivas o« v v v o ¢ o o o s o o o o @
Research QUESLIONS. . + o 4 o o o o o o o o o o »

VU b W =

III Literature Review Ld L] L] L] L] L] . L] L] L] . L] - L L - °

7
Introduction. L] L] L] . L] L] L] * L] L] L] . L ] L] L L] - . 7
3ackground: General Issue. « « « o o o o 7
Ada Development ., .+ . 4 4 4 s o s o o o o o o o o 11
Languaje Feabures . . + ¢ « o o o o« s o o
Ada As A Genz2ral Purpose Language . . .«

II[- Metﬁoiﬂlog] . . . . . . . . . . . ) . . L] ] . . . L] 26

INtroductinn. ¢ ¢ v ¢ & o « o o o o o o s o o o o 26
Research Proc2dui2S ¢ v o o o ¢ o o o o o o o o« o« 26
Translation . & v v 4 v o o o o o o o o o o o o o 29
MeasuramentS. ¢ + o+ 4+ « o o o o s o o o o s s « o 38

17, Pindings and Analysis . o ¢ 4 ¢ &+ 4 o o s + + o« « o 34 I

Introduction. . + + & v 4 4 s 4 e e e s s o o o o 34 1
Functional BEquivalence. . « « & ¢ o o « o o o« o « 36
Storage Efficiency. « « o« ¢ o o o o o o o o o« o o 45
mxecution Efficiency. . . e o o s s o 51
daintainability and Transportablllty. e o o o e « 52
Source Zode Readability « « ¢ ¢« ¢ ¢ ¢« o ¢ o o « o 59
Other Findings- . L) . . - . . . L] . . . . . » [ L] 65 !

iii




Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

A:

B:

I:

LA Aeh g gt a0 4 s 5 ,'~V_‘m" PV W P W Wy~

V. Conclusions and Recommendations . +« o o o » &

ConclusSionsS o« v« ¢ « o 4 o o o s o s s o o o
RecommendationsS + o v o « o o o o « o s o o

Source Listing Trapezoidal Integration
Program Original FORTRAN . . « « «

Source Listing Trapezoidal Integration
Program Ada Line-By-Line Translation
TeleSoft~Ada Compiler Version 1.5 . .

Source Listing Trapezoidal Integration
Program Ada Line~By-Line Translation
Using Default Float Precision Vads
Compiler Release V84.86 . . ¢ .« o« «

Source Listing Trapezoidal Integration
Program Ada Line~By-Line Translation
Using Six Digit Precision Vads Compiler
Release VA4.06 . . . . + ¢« o ¢« ¢« o o &

Source Listing Trapezoidal Integration
Main Program Ada Redesign Using Default
Float Precision Vads Compiler

Release VB4.06 . . . & ¢ v o « o o o &

Source Listing Trapezoidal Integration
Routines Package Ada Redesign Using
Default Float Preacision vads Compiler
Release V34.86 . . . . ¢« ¢ ¢ o« o o« o &

Source Listing Trapezoidal Integration

Main Program Ada Redesign Using 3Six Digit

Precision Vads Compiler Release V@4.06

Source Listing

Trapezoidal Integration Routines Package

Ada Redesign Using Six Digit Precision
Vads Compiler Release V@4.06 . . . . .

Source Listing Truck Simulation Program
FORTRAN 4 Version
witihh 3590 Element Array . « « o o« o

Source Listing Truck Simulation Program

FORTRAN 4 Version
Using 6530 Element ALray . .« . « o « o

iv

R AN A i b AR I o S g

Page




Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

M

Source Listing Truck Simulation Program
Ada Line-By-Line Translation with 35090
Element Array TeleSoft-Ada Compiler
Version 1.5 ¢ ¢ ¢ o ¢ o o o o o o o o o

Source Listing Truck Simulation Program
Ada Line-By-Line Translation with 3540
Element Array Vads Compiler Release
VB4.86 o v ¢ v ¢ o ¢ o o o o + o o o o o o

35urce Listing Truck Simulation Program
Ada Line-By-Line Translation with 6500
Element Array Vads Compiler Release
VB4.86 . o ¢ o o o o o o o o o o o o o o

Source Listing Truck Simulation Main
Program Ada Redesign TeleSoft-Ada
Version lls - L] L) e * . * * . * . L] . [ ] .

Source Listing Simulation Routines
Package Ada Redesign TeleSoft-ada
VEISion 1.5 L] L] . L] L] L] L] L] L] L] * L L] L] .

Source Listing Natural Log Package Used
By Ada Truck Simulation Program . « « « .

Source Listing Truck Simulation Main
Program Ada Redesign
vads Compiler Release V#4.06 . . . . « « .

Source Listing Truck Simulation Routines
Package Ada Redesign Vads Compiler Release
VG4006. * . * L[] * L] L] L ] L] - L] L] L] . L] - .

Source Listing Library Maintenance
Program Original Pascal Version . . . . .

Source Listing Library Maintenance
Program Ada Line-~-By-Line Translation
Vads Compiler Release V#4.86 . . . . . . .

Source Listing Library Maintenance
Main Program Ada Redesign Vads
Compllet Release Vg4'ﬂ6 . . . . . . . . .

Source Listing Library Maintenance
Routines Package Ada Redesign Vads
Compiler Rel2ase VB4.86 . . &+ « o« o « o &

Page

. 98

196

114

122

123

129

131

133

140

145

151

152

-y




Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

appendix

Appendix

Appendix

Appendix

Appendix

w:e

Z:

CC:

DD:

EE:

FF:

GG:

Source Listing Library Maintenance
Data File Creation Program Ada
Redesign Vads Compiler Release V04.06

JQutput Listing Trapezoidal Integration
Program FORTRAN 4 Version . + ¢ « . &

Qutput Listing Trapezoidal Integration
Program Ada Line-By-Line Translation
TeleSoft-Ada Compiler Version 1.5 . .

Output Listing Trapezoidal Integration
Program Adz Line-By-Line Translation
Using Default Float Precision Vads
Compiler Release V34.06 . . « ¢« « « « &

JQutput Listing Trapezoidal Integration
Program Ada Line-By-Line Translation

Using 3ix Digit Precision Vads Compiler
Release V04.86. . . ¢« ¢ &« ¢ ¢ o o o & =

Output Listing Trapszoidal Integration
Program Ada Redesign Using Default
Float Precision Vads Compiler

Release VOB4.86. . & ¢ ¢« o o o o o o s »

Output Listing Trapezoidal Integration
Program Ada Redesign Using Six Digit
Precision Vads Compiler Release V04.,06.

Output Listing Truck Simulation Program
FORTRAN 4 Version Using 3508 Element
A:rGY . . . . L) . [ . . . . . . . . . .

OQutput Listing Truck Simulation Program
FORTRAN 4 Version Using 6508 Element
Arral’ . L4 L] L] L] L] . L L3 L] - L] L] - L] * L]

Output Listing Truck Simulation Program
Ada Line-By-Line Translation with 3500
Element Array TeleSoft-Ada Compiler
Version 1.5 ¢ ¢ v ¢ ¢ ¢ o o o o s o o

Output Listing Truck Simulation Program
Ada Line-By-Line Translation with 3508

Element Array

Jads Compiler Release V84.06 . . . . .

vi

Page

. « 156
.« o« 157
.« » 158

. L] 159

L] . 160

L] . 161

. . 162

. . 163

. .« 170

. o 177

. . 134




Lt

r~'."' Pl B -

......

Appendix

e
(¢

Appendix

Appendix

yppandix

Appendix

A; ndix

¥,
(@]
D

Bibliogramhy¥ « v v v o 4 « & o o o s o o o o o o o s o o

II:

JJ:

KK:

LL:

MM

M AR A S BSA AL oMk e sie JAe - da e ooy

Page

Jutput Listing Truck Simuiation Program
Ada Line-By-Line Translation with 6500
Blement Array

vads Compiler Release V84.06 . . . . . . . 191

Output Listing Truck Simulation Program

Ada Redesign TeleSoft-Ada Compiler

Version 1.5 o+ o« o o « o « o o o o o o » » o 198

Output Listing Truck Simulation Program

2ja Radesign Vads Compiler Release Vi#4.06 . 204

Qutput Listing Library Maintenance Program

Original Pascal Varsion . . . +« ¢ ¢« ¢ « « o 210

Output Listing Library Maintenance Program

Ada Line-by-Line Translation

Vads Compiler Release VB4.06 . . . . o« . o 213

Qutput Listing Library Maintenance Program

1da Redesign

Vads Compiler Release V24,96 . . . . . . . 216
219

vil

P aad




L GEEaSL e Shd afS Laie SRS JdEh ane e b SaEdlsiee Mes are o ane o g o

: Figure Page
[ 1. FORTRAN: Trap3 OUtpUt. « & &+ + o & o « o « « « « . 36
2. Ada: Trap3 Output (Line-by-Line) . . . . . . . . . 37
3. Ada: Trap3 Output (With 6 Digit Precision) . . . . 38
. TORTRAN: Truck Qutput . . . & + &« &« ¢« o o o o« « » 39
5. 3da: TIruck Output (Line-by=-Line) . . « « « « « « o 40
5. Ca2ak of Queue Condition o . &+ « v ¢ « ¢« o &+ o o o 43
7. Sample of LIBLIST Output . . . &« « « ¢« o o & « o « 45
3. Sanyi2 of FORTRAN Source Code. « &+ & « o o « o + o Ol
9. Sample of Ada Redesign 3ource Code . . . . . . . . 62

14. Sample of FORTRAN Declarikinn and Iaitialization
of Objects * L ] L] L] L3 - L] L ] L] L ] L] L] . - L] L] L] - L L 64

11. 3ample of Ada Declaration and Initialization
of objects - L] L] . o . L] . L] L] L] * L] L] . . - . L] . 65




AFIT

AJPO

APSE

DARPA

DCA

DPD

HOL

JOLAG

KAPSE

LRM

List of Acronyms

Air Force Institute of Technology

Ada Joint Program Office

Ada Programming Support Environment
Defense Advanced Research Project Agency
Defense Communications Agency

Data Project Directive

digh Order Language

High Order Language Working Group

Kernal Ada Programming Support Environment
Language Reference Manual

National 3ecurity Agency

Program Design Language




. .._-..‘ AT A

.
TS S W)

AFIT/GLM/LSM/85S5-62

Abstract

The Ada programming language is the result of a

multiyear effort under the sponsorship of the Department of

Defense (DoD) to
language for use

was developed to

obtain the benefits of a single DoD-wide
ir embedded computer systems. The language

reduce or eliminate many of the s2rious and

costly problems associated with the development and

This research

maintenance of software for embedded systems.

assesses Ada's suitability in simple, non-embedded

applications, specifically, numerical computation,

FORTRAN and Pascal

simulation, and file processing.

programs in these applications were translated into Ada.

Comparisons were made between the originals and the

translations with regard to lines of source code,

transportability, maintainability, readability, execution

time, and any other finding relevant to the study.

study revealed that while further research is needed, Ada is

a powerful programming language suitable for use in these

non-embedded applications.




AN ASSESSMENT OF ADA'S

SUITA3ILICTY IN GENERAL PURPOSE

PROGRAMMING APPLICATIONS

I, OVERVIEW

Introduction

In the early 1973's the Department of Defense (DoD)
conducted studies on the proliferation of computer program-
aing languages in DoD. On the basis of the studies it was
predicted that $24 billion c¢could be saved on DoD computer
software costs between 1933 and 1999 if one common program-
2ia; language was used rather than the approximately 450
S7>gramming languages and incompatible dialects then in use
in DoD. The area of computer application with the greatest
number of different languages and military service unique
72rsions of lanjuages involved embedded computer systems,
and hence this area was chosen as the original target appli-
cation area for a new common DoD language. An 2mbedded
computer is one wihich is an integral part of a larger system
and either controls or otherwise affects the operation of
the systam. EBmnbedded computers are part of virtually every

military weapon system today (2:12-13). DoD, in an effort

to standardize and replace most of the programming languag-




2s in use, sponsored the development of the Ada programming
language. Although Ada was developed primarily for use in
emoadded systems, it also has the potential to be used in
the general purpose programming environment. That is, Ada
nas the potential to be used in a wide range of applica-
tions, such as payroll, inventory management, numerical
computation, and personnel data. If Ada can effectively be
used as a general purpose language and becomes the DoD
standard language for all applications, as opposed to just
embedded systems, costs associated with support of all
programming languages used for non-embedded applications can
also be eliminated. This will result in cost savings of more
than the original estimate of $24 billion (2:12-13; 3:31;

13:9).

Problem Statement

Evantually, DoD will require all embedded systems to be
written in Ada. Therefore, current research efforts are
primarily aimed at evaluating embedded applications. This
study is not involved with embedded systems, but rather
investigates the suitability of Ada in other than embedded
system applications. In particular, this study analyzes Ada
against otner traditional languages as they are used in
carticular applicationns. The languages and applications
evaluated are; 1) FORTRAN, in a numerical computation and in

a simulation application, and 2) Pascal, in a text file

......




processing application. This study evaluates the relative
advantages and disadvantages of using Ada versus the chosen

language in the given application.

Justification

The Department of the Air Force, Directorate of
Information and Technology, issued Data Project Directive
(DPD) HAF-P83-006, dated 23 December 1933, The DPD "directs
planning, experimentation, and analysis efforts required to
avaluate the use of Ada in the general purpose computing
anvironmnent, This program is in pursuit of Ada Joint Pro-
jram Office efforts to implement and introduce Ada within
DoD as provided by their charter, (OUSD(R&E)) memo, 12
December 1983, Ada Joint Program Office (AJPO)" (19:1).

The objective of the program is to evaluate Ada in a
general purpose environment and to identify training re-
quirements. Specifically, the DPD directs the participants
in the study to:

1. Gain experience with Ada by using the language
to accomplish a representative range of end uses.

2. Document experiences using Ada and provide a
technical evaluation of the suitability of the
language for widespread use in the Air Force
general purpose computing arena or subsets thereof
(19:1).
The DPD has specifically tasked the Air Force Institute
of Technology to "use Ada on one or more selected applica-

tions and provide evaluation reports in pursuit of the

stated objectives" (19:3).




The justification for this research is based on the
DPD. Research using Ada in the general purpose environment
is necessary as it will pe used as part of the basis in the
determination of the suitability of Ada as the DoD standard

language.

The scope of this research is confined to the evaluation
of the Ada programming language in general purpose applica-
tions., As mentioned earlier, this study is limited to an
evaluation of Ada versus the high order programming languag-
es FORTRAN and Pascal. The applications considered are

numerical computation and a simulation application in FOR-

TRAN, and a text file processing application using Pascal.

Limitations

Two of the comrilers used in this study are the
TeleSoft-Ada Compiler, version 1.5, 31 May 1983, and the
TeleScft-Ada Compiler, version 2.2, 11 Feb 1985, running
under the UNIX operating system.

Both versions of the TeleSoft-Ada Compilers are
unvalidated by the Ada Joint Program Office and are only a
partial implementation of the full Ada language. Although
only a subset of the full language is available, the unval-

idated compilers implement enough of the language facilities

to be useful ia this research. All language facilities




available in this release of the compiler conform to the

requirements of ANSI/MIL-STD 1815a, 22 Jan 1983, and will
therefore be in subsequent releases, and ultimately, the

validated version.

This research does not involve an evaluation of Ada
against COBOL applications. Compete assessment of Ada's
suitability as a general purpose language must include
comparisons with a language so widely used for business data
processing as COBOL. However, the authors have no previous
experience with COBOL, therefore, they did not attempt to

evaluate the differences.

Research Objectives

The objectives of this researcnh effort are as follows:

1. To determine if Ada is suitable as the
implementation programming language in the applications
chosen for the study.

2. Identify particular strengths and/or weaknesses of
Ada in the specific applications and in general.

3. Make recommendations from the findings on the
suitability of Ada as a general purpose programming lan-

guage.

Research Questions

This study addresses Ada's strengths and weaknesses
relative to the language it is to be compared against, and

includes but is not limited to the following areas:

5

TR vy TRy w—y

At e




1. To what extent can the Ada translated programs

replicate the output of the original programs?

2. What differences, if any, are evident
concerning the number of lines of source code and the size
of the executable code necessary to replicate the output as
compared against the original programs?

3. Are there differences in the runtime

characteristics of the programs coded in Ada as opposed to

the original programs?

4. Are there any differences in the

maintainability and transportability aspects of the Ada

coded programs to include error detection, testability, and

any other observations relevant to the maintenance of the

complete system as compared against the original programs?

5. What are the differences or similarities in

readability of the source codes?

6. Other findings which are important to the

overall evaluation of the language in the general purpose

environment.

..............................
..............

.......................
..................................
...................

................




II. LITERATURE REVIEW

Introduction

This literature review investigates several aspects of
the computer projraaaing language Ada. The literature
review will first identify problems which led to the nead
for a common high order language; second, provide an over-
vizw Of the steps taken to develog Ada; third, relate Ada's
f2atures to modern programming methodologies; and finally,
ouatline what the literature reveals concerning Ada's suit-
ability to be used as a general purpose programming lan-

guage.

Background: General Issue

In the early 1978's, the United States Department of
Defense (DoD) was faced with an iacr=2asing trend in software
costs. In 1973, software costs were over $3 billion, and
consisted of 46 percent of DoD computer costs. A breakout
of these costs by computer application reveals: 56 percent
for smbedded systems, 19 percent for Jdata processing, 5
percent for scientific, and 20 percent for indirect software
costs. An early 1978's study by the Electronics Industries
Association (EIA) predicted that total DoD software costs

for 2mbedded systa2ns alon2 would exceed $32 billion in 1999.

Software shortcomings within DoD which created these rising

D T T

PR T i




costs were a diversity of programming languages, improper
application of programming languages, languages not equipped
to handle modern programming methodologies, and a lack of
useful software environments. An early 1978's DoD study
revealed over 452 different programming languages in use
within DoD, resulting from the lack of controls on the use
of computer languages. Project managers were free to use
any language. All of this led to increased software costs
in the following ways:
1. Duplication of training and maintenance for
each independent language, comgpilers and software
support packages.
2. Limiting the applicability of new support
software to one system or project (11:26).
Besides cost, though related to cost, another reason for
the development of a more powerful language is a condition
called the "software crisis." Grady Booch describes the
crisis in the following way:
Our computers make some things more ef-
ficient and have opened areas of application
that were previously impossible to solve,
Correspondingly, we have developed software
tools such as programming languages to nelp
us solve problems and c¢oantrol our machines,
but many of these tools still do not help
us cope with the complexity of our solutions.
Thus, software development is no longer a
labor-saving activity but is labor intensive
instead (2:2).
To solve this problem of complicated, unreliable,

inflexible, and unmaintainable software, emphasis must be

placed on developing languages which can exploit modern

R R

e

e ——

I SO - S




design methodologies. Languages such as FORTRAN and COBOL,
although popular, do not have the capabilities needed for
use with modern design methodologies. According to Booch,
"In a sense, these languages constrain our way of thinking
about a problem to a manner that is primarily segquential and
imperative; we call this condition the von Neumann mind-set”
(2:3). FORTRAN and COBOL were not designed to handle the
more complicated systems we currently possess, for example,

embedded computer systems., Therefore, DoD needs a language

which atilizes modern design techniques., David Fisher, as
quoted in Booch's book, explains which software problems
need to be solved:

1. Responsiveness. Computer-based systeas
often do not meet user needs.

2. Reliability. Software often fails,

3. Cost. Software costs are seldom pre-
dictable and are often perceived as excessive,.

4. Modifiability. Software maintenance is
complex, costly and error prone.

5. Timeliness., Software is often late and
frequently delivered with less than promising
capapbility.

6. Transportability. Software from one system
is seldom used in another, even when similar
functions are raguired.

7. Efficiency. Software development efforts do
not make optimal use of the resources involved
(processing time and anemory space) (2:6-7).

For DoD to reduce these types of problems, a language

wnich can support modern design methodologies was desirable.

SR SR RY

- " - - - T
el sl bt el atin e




TR Y —

P Pt o R e A B S A i A Aot i S e e e Ak ) e Bnc e Mbee Sie 4 Y TYTeTTw

Since the effort was aimed at embedded systems, the new
language should deal with the following:

l. Parallel Processing and Real-Time Control.
Capability to execute separate entities in parallel as if
each were being executed by an independent logical proces-
sor, Entities proceed independently, except at rendezvous
points.

2. Exception Handling. Capability of the program
to respond to events that cause suspension of normal program
execution because of errors or other unusual circumstances.

3. Unigue I/0 Control., Capability for
communication with unique input and output devices.

4, Abstraction. One's view of an entity in the
oroblem space as opposed to the view from the solution space
of the computer. Part of a ladder of abstraction in which a
Jiven part of the solution is implemented at a lower level,.

5. Information #diding. To make inaccesible
certain implementation details tinat should not affect other
parts of a system (2:13, 27-28; 7:9.1).

To reduce software costs and attempt to solve the
software crisis, the DoD realized the need for a common high
order language. 3ince embedded systems comprise the major-
ity of DoD software applicationns, the effort progressed
with embedded systems in mind. The following section
outlines the development of the common high order language

which eventually became known as Ada (2:11~-13).

S U AT

LRl A A Sl B e 2ot il 5 gt

TR T
L N




AALAARA Ba A B A A ATMS B Ak &8 B AL A e A dvi A An o s R

Ada Development

In 1975, DoD establisned tne High Jrder Language Working
Group (HOLWG) to investigate the feasibility of developing a
common high order language for utilization on all embedded
computer systems. Membership in the HOLWG consisted of
representatives from the Army, Navy, Air Force, Defense
Communications Agency (DCA), National Security Agency (NSA),
and the Defense Advance Resrarch Projects Agency (DARPA)}.
The objective of the HOLWG was to define the technical
requirements for a common language, compare the requirements
against existing languages and make recommendations on the
adoption of a common languade from existing languages or the
development of a new language (12:27; 6:45).

Strawman. The first iteration of the language
requirements was called Strawman. In April 1975 Strawman
was distributed to the military services and other federal
agencies for review. There were no quantifiable features in
the Strawman. The general goals of Strawman were to deter-
nine efficiency, reliability, readability, simplicity and
implementation. The reviews and responses from the Strawman
document led to a tentative set of requirements called
woodenman.,

woodenman. In August 1975, Woodenman was widely
distributed not only to military and fedaral agencies, but
also to the computer industry and computer science research

community. More than 100 review teams evaluated Woodenman

(6:35).

~ha mcranahilirv. far manv._ prodrammers to work together on the



P P PRR———

Tinman. The response to Woodenman led to a complete set
of requirements in January 1976 callad Tinman. At this
time, Tinman was officially approved for research and devel-
opment efforts by tne Assistaat 3ecretary of Dzfense for
Research and Development. Along with the development of
Tinman requirements, sixteen companies performed evaluations
of 23 programming languages rgaianst the developing require-
ments. The languages included, FORTRAN, COBOL, PL/1, HAL/S,
TACPOL, CMS-2, CSs-4, SPL/1, JOovViIAL J3, JOVIAL J73, ALGOL 64,
ALGOL 638, CORAL 66, Pascal, SIMULA 67, LIS, LTR, TRL/Z,
EUCLID, PDL2, PEARL, MORAL, and EL/l. The results of the
evaluations concluded:

1. No existing language was suitaole for use

as a common high order language for DoD embedded
systems.

2. A single language was desirable.

3. A naw language should be developed from an

appropriate base (2:16).

Although each was considered inappropriate as the required
language, the evaluators recommended Pascal, ALGOL 68 and
PL/1 as appropriats ase languages (2:15-16).

Ironman. In January 1977, the Tinman reguirements were
updated into the Ironman document., While both documents
satisfied basically the same requiraments, Ironman was
written in an organized language description and wmanual
format, whereas Tinman was organized around general areas.

Ironman was basically the specification around which con-

tractors developed their proposed language designs (6:48).

12




Pt v ARl Aae S et it S e Tiec S0n 4 S e s & A0 20 B AT Sh A J0A A Shm 2 au e

Two independent studies conducted for the Management
Steering Committee for Eadbedded Computer Resources between
January and November 1977 concluded that hundreds of mil-
lions of dollars could b2 saved in DoD each year if a common
language was developed (2:16).

DoD-1. Based on the evaluation of Tinman raquirements,
the HOLWNG was directad to develop a common high-order lan-
guage named DoD-1. The DARPA was assigned to award the
design contract. Wanting a language with high guality, and
a language to be acc=pted outside the defense community, DoD
opted for an international design competition from which to

selact the design. The request for proposal (RFP) was

submitted in April 1377, requesting designs for the nigh-
order language. DARPA selected four contractors to continue
tne design. All four designs were Pascal based. The con-
tractors involved were: SofTech, SRI International, Inter-
metrics, and Honeywell/Honeywell Bull. 1In the period Febru-
ary through Marcn 1973, the designs were =2valuatad by 125
Jesign review teams, and two designs were selected to pro-
ceed (Intermetrics and Honaywell/Honeywell 3ull). During
this next phase of the davalopment, emphasis was placed on
programming environuw2nts. A language in itself was not
capable of improving software development without a suitable
support systam. In 1973, the HOLWG distributed the Sandman
document which addressed the technical and managerial as-

oz2cts of th2 porogramming environnments. Based upon the

13




S O N T W W v —>—~

response to the Sandman document, the Sandman document was
revised and released as the Pebbleman document. With empha-
sis on the programming environment, the HOLWG released the
final language reguirements in June 1978 called Steelinan,
which corrected all past deficiencies (2:17-18; 6:48).

A review of the final two designs was conducted in March
through April 1979. 1In May 1979 Honeywell/Honeywell Bull
was awarded the contract for the new design. The Honeywell
team was out of France and was headed by Dr. Jean Ichbiah
(2:18) .

Ada. It was at this time that DoD-1 was named Ada.

Ada was selected to honor the mathematician Lady Augusta Ada
3yron (1815-1852), Countess of Lovelace. The Countess
worked with Charles Babbage on his difference and analytic
2ngines. She recommended how the engines could be pro-
grammed, thus is known as the first programmer (6:48).

Stoneman. A continuing area of concern was the
programming support environment. The Stoneman document,
which was a revision of the Pebbleman document, was the
basis for a project which started in mid-1980 to resolve
this area of concern. Support environments may be cata-
gorized as closed-ended or open-ended. In a closed-ended
environment, "the user is given a fixed set of tools that
are presumably sufficient to meet all basic requirements. A
closed environment cannot be altered or extended, short of

re-issuing the environment by suppliers" (6:58). An open-

14




ended environment tool set can be modified or extended at
any time to meet the needs of the user. Stoneman applied
the open-ended environment approach (6:53).

APSE. The Ada Programming Support Environment (APSE) is
based on the Stoneman model. Potential cost savings and
quality software are inherent in an APSE. The following is
a description of an APSE:

The purpose of an APSE is to support the develop-
ment and maintenance of application software
throughout its l1ife cycle, with particular emphasis
on software for embedded computer applications.
An important concept in an APSE is the data base,
which acts as the central repository for infor-
mation associated with each project throughout the
life cycle (10:78).
The end result of a suitable APSE is the potential for
portable and reusable tools and apgplication software packag-
es (13:8).

KAPSE. To ensure maximum compatibility and portability
between APSE's, the Stoneman model requires all machine
dependencies of the support environments to be contained in
the Kernal Ada Programming Support Environment (KAPSE). The
purpose of the KAPSE "is to interface the tools to the
hardware” (13:8). According to Bruce Sherman, vice-presi-
dent of planning for TeleSoft Inc., the KAPSE interface
orovides "common definition which the APSE, compiler, stan-
dard I/0 packages and applications may use to request system

services" (18:141). The KAPSE will allow the transport-

ability of APSE's from one host system to another.

15

R R ——

-, et
. EAE R SO PG !
R T Ty Wt W,




v
hy YR

AJPO. In December 1989 the HOLWG transitioned into the
joint s2rvice Ada Joint Program Office (AJPO). The respon-
sibility of the AJPO was, "to manage the DoD Ada program by
coordinating the military services' efforts to introduce Ada
and Ada Programming Support Environment (APSE)" (13:5). The
functions of the AJPO were to:

1. Maintain the Ada language standard.

2. Develop common-use training and education
materials.

3. Validate Ada compilers.

4. Foster the us2 of ada within the software
community.

5. Develop Ada software tools to meet the common needs
of the services and other DoD agencies (13:5).

ANSI Approval. Publication of the Reference Manual for

the Ada Programming Language (Language Reference Manual

(LRM)) was completed in July 1938. The LRM was republished
in December 1980 by DoD as a military standard (MIL-STD
1315). Approval of Ada as an American National Standards
Institute (ANSI) standard language occurred after canvassing
potential implementors and users of the language. Based
upon favorable results of the canvass, and after minor
changes, Ada was approved as an ANSI standard on 17 February

1983 (13:7).

A duse Aoe v e S n s vl Jse oee aee o8 0 8 o

L 3




gram is to ensure non-divergent implementations of Ada. DoD
has trademarkz2d the Ada name, thereby limiting the use of
the name Ada only to those compilers having been validated
by the Ada Validation Office. To become validated, compil-
ers must pass a test suite containing more than 1700 rigor-
ous program tests (6:52; 13:9).

Though a considerable effort nas been made in the
development of ada and its support environment to date, much
work and research is still necessary in developing suitable
AP3E's and KAPSE's to fully realize the potential of the

language.

Language Features

In the literature there are many reviews of the Ada
language which praise its modecn programming features.
According to Peter Foanash, Daputy Director of the AJPO, "Ada
is more than just anotiner n2w language; by design it incor-
porates many features needed to support modern software
enginearing practices. An intrinsic principle of modern
software engineering is the use of an automated eavironment
that provides complete life-cycle software support" (13:7).
Jean Sammet, manager of software development for IBM's
Federal Systems Division, agrees with Fonash and remarks
that "many of these features have appeared in the past but
they haven't been put together in the same [effective] way"

(12:62). The features of Ada are many and varied. The

17

T Ty




i DI AR A S A It S b Sns 2 Anc S Yl e S uhiiecs T — - -

language has borrowed features from other languages, but by
no means is Ada comparabdle to another language. It looks
like Pascal at first glance; Ada, however, is an enormously
larger and more powarful language. The following sections
outline some of the features of Ada and describe how they
are important to the language,

Package Concept. Jean Ichbiah, a major influence and

head of the Ada design team, believes "the package concept
is the core and major contribution of Ada" (13:62). A
package is a program unit in Ada wnich defines a collection
of related entities (2:474). These entities may be con-
stants, variables, types, subprograms or any legal Ada
zonstruct. When defined in a package, these entities may
then be used with any other program unit with a simple
'with' clause. This facility provides Ada with a level of
abstraction never before available in a high-order language.

Strong Data Typing. Typing is borrowed from Pascal and

allows the specification of data types. 3trong data typing
can be illustrated by a single 2xample. By defining a data
type 'coin' with the wvalues <1,5,18, and 25> representing
cents, and another data type 'currency' with values
<1,2,5,13, and 23> representing bill denominations, the
compiler would generate an error message if the two types
were mixed in an arithmetic operation. This feature reduces
software costs by detecting operations on incompatible data

types at compile time (17:76).

18




S PO OV TR — P———

Block Structure and Separate Compilation. This feature,

borrowed from ALGOL and FORTRAN, allows separates conpila-
tion of program units, particularly subprograms, packages,

and tasks. The major benefit is simpler error detection

since each module may be compliled and tested as each is
built (16:72).

Tasking. This feature of Ada allows separate portions
of a program to execute concurrently., With this flexibil-
ity, Ada can perform such real-~-time applications as robot-
ics, communications, interactive graphics, and computer-
aided design (19:72).

Exception Handling. This feature is borrowed from PL/1l.

This gives the programmer the facility to define, find and
trap errors using standard Ada constructs. Exception han-
dling allows the programmer to maintain control of program
execution when a condition has occurred which would normally
terminate execution of the program (as in division by zero).
This makes programs more flexible and portable (13:72).
Benefits. One oriticisa of Ada is the complexity of
the language. It may be a difficult language to master; the
benefits, howevar, far outweijh the difficulties of learning
the language. Long-term benefits of using Ada include:
1. Ada programs will be transportable, that is, a
projram written to run on one machine may be moved to anotna-

er machine, recompiled, and executed with very few or no

changes to the source code.




Lk Al sl andt Sl Sed Al heth S aod 4 "'"1

2. Packaging and separate compilation will allow
orograms to be constructed using existing modules. This,
along with the use of exception handling, will make for
reliable programs.

3. All of the above benefits will make programs

written in Ada much easier to maintain (10:72).

Ada as a General Purpose Language

This section concerns the suitability of Ada as a
general purpose proagramming language. It will address the
views on the potential of Ada in the general purpose envi-
ronaent based on the features of the language as compared to
other languages used in the same environment,

Advantages. While Ada was designad for embedded
systems, members of the AJPO predict that eventually Ada
will become a programming standard not only in the DoD, but
also in the non-DoD community. Though the Ada design did
not address the C23D2L environment of financial and inventory
nanagement, nor the scientific environment of FORTRAN, the
AJPO believes Ada is suitable for these environments.

Fonash explains this attitude: "because Ada is a modern
A2cyjsanaing language that embodies good software enginzering
drinciples and modern language features, there appears to be
a growing recognition that Ada is suitable for areas other
than the embedded computer applications on which it was

designed” (13:9). For these reasons, Ala should be a suit-

249 |




able language for the traditional COBOL and FORTRAN applica-
tions (13:9).

Commercial firms have demonstrated Ada's capability for
use in business and non-DoD applications. Ralph E. Crafts,
vice-president of Operations and Marketing at INTELLIMAC,
Inc., has documented business and other non-DoD Ada applica-
tions. Examples of actual Ada business applications in-
clude:

1. A Multi-state Payroll System installed by a manu-
facturing facility in March 1982,

2. An Inventory and Parts Control System installed in
June 1982.

3. An integrated General Ledger Accounting System
installed in the summer of 1934 (5:74d).

As a result of three years of Ada development for
commnercial applications at INTELLIMAC, Crafts feels there
are many benefits in using Ada. He states, "The primary
benefits to be realized from using Ada in the commercial
environment are: enhanced utilization of structured anal-~
ysis and design; the use of Ada as a PDL; accurate, func-
tional deliverables; reuse of existing code; high produc-
tivity; and lower life cycle costs™ (5:71).

According to Crafts, Ada provides a structured, engi-
neering approach to software development. Language features
sach as, aodularity and packages make it difficult to write

poorly designed and unstructured programs (53:71).

P v rTrT Y Ty T N P TW T W

.-

e,

o sl J A at




LA ass aan s e g " B e e ane o

The use of Ada as a PDL (program design language) is a
benefit of the language. A PDL is usually a nonexacutable
extension of a language which aids in the design of pro-
jraas., This extension of the language is usually easy to
r2ad English statements, which enhances the readability of
the program design. Ada alone can be used as a PDL in lieu
of developing PDLs for aiding Ada program design. According
to Crafts, there are many Ada projects which are using Ada
as a PDL (5:71).

The use of structured design and programs written in
understandable code benefit the delivery of accurate and
functional programs to the end user. Crafts contends that
the use of structured d=signs and code written in under-
standable English will result in thz end user receiving the
product specified and expected (5:71).

The reuse of existing Ada source code enhances produc-
tivity and reduces software costs. Two 2zamplas as ~x-—
2lained by Crafts follows:

1. An order entry system program which consisted of
53,338 lines of Ada source code was developed several months
an2ad of schedule. Approximately 88 percent of the prograa
r2used existing Ada programs. Not only was timne of program
daevelopment reduced, but the time to test and debug the

program was also reduced because only 28 percent of the

software was new.

XY




A A I R A B e e B S pedh g R e N Rk g SR NSt S Y T BT Sl S S i A v e M A Ty -

2. One programmner developed an 8038 line Ada program

in one week by using 2xisting Ada programs (5:71-72).

Even without the use of existing Ada prograas, Ada
2ahances productivity. Over the three years of Craft's
study Ada programmers have averaged 58 lines of operational

code per day which includes design, testing, and debug3jing.

This is a 833 to 900 percent increase in productivity over
other languages. The Moog Company of 3uffalo, N2w York had
similar results. Prior to Ada, programmers typically wrote
200 lines of code per mnontnh. With Ada, they averaged 1200
lines per month (5:72, 6:54).

Life cycle software costs are reduced with Ada. Craft
states in generalities, without citiny figures, tnat Ada
efficiencies of modifications, upgrades and changes to
existing Ada prograas nakes maintenance of Ada software
inexpensive (5:72).

One of Ada's advantagjes is the ability to handle large,
complex software projects. Richard LeBlanc and John Goode
of the Georgia Institute of Technology find Ada well de-
signed for larges complex systems, The structured program-

ming design of Ada is based on the concept of modularity.

Modularity allows the programmer to reduce large systems
into smaller and easier to handle units. 1In Ada these units i
are packages, subprograms, and tasks. Modularity maximizes

progran reliability, readability, and maintainability

L, e

(14:75).

- et

23

.........




T T——_—————, " N R T WV PN W VW W o v v v w— v w

Although the members of the AJPO and others are
confident that Ada can sucessfully be applied to other than
embedded applications, there are critics of the language.

Disadvantages. The most common criticism of Ada is the

complexity of th2 language. LeBlanc and Goode consider this
unfair treatment of Ada. Whereas Pascal is a relatively
simple language, it is not designed for large-scale software
developnent. The design goals of Ada and Pascal differ.
Pascal was designed as an educational tool, whereas Ada was
developed with a large range of objectives, to include
large~scale projects. LeBlanc and Goode go on to say that
the differences in design objectives should first be consid-
ered before being too critical of Ada (14:75,81; 21:248).
One may wonder whether the added features of Ada are
necessary in a Jeneral purpose language. David Coar, a
technical gorojuct staff member of Floating Point Systems
Inc., conducted a comparison of Pascal, Ada and Modula-2.
Pascal was designed by Nicklaus Wirth as an educational
programming tool, suitable for modest size projects. Pascal
is not recommended for major commercial or industrial pro-
jects, and for these reasons, Pascal has never been thought
of as a true systems-implementation language. Modula-2 is
Wirth's effort to go one step further than Pascal and design
such a systems-implementation language. Modula-2 is a
language with similar design goals as Ada. Examples of

similar goals are; facilities for hardware interfacing, and

SIS N

24

Setend iy da’a’a a2,




the capability for many programmers to work together on the
same project. Coar's conclusions were that Modula-2 out-
performed Pascal, and was better than most available lan-
juajes., The extra features of Ada, in his opinion, were of

narginal value as an implementation language (4:232).




had e we g w " - e e
. .« =T T AT IR TGN et WY Bafitolinth it A i A S Adiiliel AN A St A Rl e i T PP —— TTY T T T TV TR T T T E T Y - w —

III. METHODOLOGY

Introduction

Ada was primarily developed and designed for use in
embedded systems. The primary objective of this research is
to detarmine if Ada is suitable for use in general purpose
programming applications. To l:t2rmine Ada's suitability,
this study compares Ada to two proven high order languages,
FORTRAN and Pascal, in specific applications. The following

sections Jdescribe the procedures used in this study.

Research Procedures

The choice of a methodology in this research was
influenced strongly by the DPD. This docuwent directed a
study of Ada and specifically tasked AFIT to "use Ada in one
or more selected applications and provide evaluation reports
in pursuit Of the stated objectives" (19:13). Following
tais guidance, this ra2seaicch compares non-embedded programs
writtan in FORTRAN and Pascal, against the same programs
translated ianto Ada.

Selection of Programs. The first step of thnis study
consisted of selecting three prograas from non-embedded
applications written in the high order programming languag-

es, FORTRAN and Pascal. The size of the programs were

26

D '_ - . . ..' ..... L e e s T T e .-
.........................

. . - - '.'.'.".~'«..
- . e e N A

2 Py ey Py * c e . N .‘\
PR RPN AP LL._.MLL_- WSROI AP A ~-1A1-x_1.k1"‘-:.\-.:~.4;-




relatively small, ranging from 60 to 30@ lines of source
code. This size was desiranlz2 foc two reasons:

1. Time limitations. 3Since tae study involves
tue translation of the programs into Ada, the researchers
did not want to spend an excessive amount of time translat-
ing programs. Progjyraas in the selected range of source code
lines were determined to be appropriate and within the time
available to complete the study.

2. Manageability. The researchers did not want
to be overwhelmed by programs exceeding 1008 lines of code.
The study is concerned with determining the suitapbility of
Ada for use in the general purpose environment, not the
researchers' ability to comprehend and translate large
programs.

The sampling design used in the selection of the three
orograms would be classified as nonprobability sampling,
that is each population element (i.e. possible programs to
selact from) does not have an equal chance of being select-
ed. The objectives of the study justifies the use of this
type of sampling technique. Accocding to Emory "a random
sample that is a true crosssection of the population may not
be the objective of the research. If there is no desire to
Jeneralize to a population parameter then there is less
concern about whether or not the samnple is fully representa-
tive™ (9:177). The objective of this study is not to gener-

alize about Ada's superiority or inferiority to FORTRAN and

27

SRS LT WA WP PRI W TP S S N Y W TR AT U daondion .'l.'l.il'il'liili "o 'il'- I.‘ A T NI A AU DR AR R A,




D e 3 T e e e v

Pascal, but rather from the comparison with these languag-

es, to determine the suitability of Ada to solve problems
typically solved using these languages (9:176-177).

In salacting the programs to be evaluated, the
particular nonprobability sampling method used was the
method Emory defines as purposive (9:177-173). A judgment
was made as to wnich programs were selected. The decision
to use programs originally written in FORTRAN and Pascal was
based on the researchers' experience and familiarity with
these languages. The three programs selected for transla-
tion were:

l. A simulation program which simulates a single
server, single gueue system., Program title is TRUCK, and it
is originally written in FORTRAN., (1:76-83)

2. A numerical computation program which
approximates the area under a curve using the Trapezoidal
Method of Numerical Integration. Program title is TRAP3,
and it is originally written in FORTRAN. (13:207-288).

3. A menu driven, interactive text procassing
program which updates a library file system. Program title
is LIBLIST, and it is written in Pascal (22:274-280).

These programs were judged by the researchers as having
a wide variety of features which would test Ada's suitabil-

ity as a general purpose programming language.




LAV Gl el i il B et couih aond sttt suleh s

R R P T WU W W T s W W) w—r

Translation

In translating a software package from one high-order
language to another, two characteristics of the original are
of prime importance for the translation to be considered
correct. The first is execution equivalence, including
functional equivalence and efficiency. The second is source
code quality (3:3).

Exact execution equivalence would be for two programs,
each written in a different high-order language and each
compiled and linked, to contain the same number of machine
instructions in the executable image file and to use the
3amne amount of system resources at execution time. E=xecu-
tion equivalence for practical purposes is almost impossible
to do. 1In this study, execution equivalence is defined as
functional equivalence, that is, both the original and the
Ada translation will produce the identical output given
identical input. Also included here is efficiency. To the
highest degree possible, given the limitations of the unval-
idated Ada compilers, the Ada translations are as efficient
as possible in terms of processor time and storage used
(8:4).

The quality of the translated code is the other
important characteristic to be considered during a transla-
tion. The code should be "readable, easily understandable,
and embrace the style and iatent of the language in which it

is coded. Translations should also result in robust imp-

29

T I YW I YT o~y




lementations, using to the fullest extent possible the power
of the target HOL" (8:5).

To satisfy all of the above requirements, each original
orojram under went two translations: a line~-by-line transla-
tion and a complete redesign.

Line~-by~line Translation. In this translation, the

original was translated with a one-to-one correspondence
o2twzen the original and the Ada code to the highest degree
possible within the constraints of the language. Sections
of code not translatable in this manner were functionally
translated and annotated as such, maintaining the existing
structure and flow as much as possible.

Tais type of translation is done to establish a baseline
of functionality (i.e. identical output given identical
input), and efficiency against which to compare the original
programs and the complete redesign translations,

Complete redesign. In this translation the prime

consideration with respect to the original is functionality.
In order to use and exercise the large and powerful set of
constructs available in Ada, the original problem is solved
using object-oriented design, a design methodology described

by Booch (2:40-44).

Measurements

Using the above mentioned translations, this study

measures the differences and similarities between the trans-

30




lated and original programs. The following qgualitative and
guantitative measurements are made on the programs:

1. Functional Eguivalence. The most important
Juestcion to be answered in this study is to determine if the
output from non-embedded applications can be replicated
using Ada. The first measurement of this study compares the
output generated by the original programs with the output of
the Ada translated programs. To insure functional equiva-
lence of the programs, it is essential that identical input
be used for each related program.

To determine functional equivalence, this measure
requires a qualitative assessment of the output. If the
output is not identical, this study explains the consequenc-
es leading to the deviations. Specific areas addcessed are
the differences/similarities in 1/0, real number precision
and other factors which cause differences in the output
between the original and translated programs.

2. Storage Efficiency. This mneasuresment
determines gquantitatively the number of lines of source code
necessary to replicate the original program's output, and
the amount of storage space required in the runtime system.
This measurement determines the storage space efficiency of
Ada as compared to the other languages in the given applica-
tions. This measurement also involves a qualitative assess-

ment of the reasons creating the differences, if any.




. A T e r- gy g PPy \ aat
i . . . < N - y R R P W W N W W Ry W] W W=~

3. Execution Efficiency. This measurement
involves comparing th2 execution runtimes of the original
orograms with those of the translated programs. This meas-
urement determines the execution time efficiency of Ada as
compared to the other languages in the given application.

4, Maintainability. This measurement is a
qualitative assessment of the types of errors encountered
while:

a. Debugging the original programs when ini-
tially running the orojrams on tnhe Unix operating system.

b. Debugging the Ada translated programs.
This measurement directly relates to the next measurement,
which is transportability. In this study, transportability
involves compiling the programs on different compilers.

5. Transportability. This measurement is a
quantitative measurement of the number of changes required
to compile both the original and translated programs on
different conpilacs, 3pecifizally the compilars used are:

a. Ada: TeleSoft, version 1.5, TeleSoft,
version 2.2, and Verdix, version VJ4.36.

b. FORTRAN: Microsoft's FORTRAN-8G, FORTRAN
Extended Version 4 and the FORTRAN 77 compiler Jeveloped by

Bell Laboratories, August 1978.

¢. Pascal: Berkeley Pascal Compiler, Version




6. Readability. This measurement is a
qualitative assessment of the ease of understandability of
the source code of the original and translated programs.
This is demonstrated by selecting identical portions of the
original and translated programs and allowing the reader to
make his or har own assessment as to the readability of the
compared source codes. 1Identical portions of a program is
defined here as parts of a program performing an identical
function, for instance reading a file, departing a queue,
act.

7. Miscellaneous. This study also records
any fiadings important to the overall evaluation of the

language in the chosen applications.




AR MRS Jah And Aal 2ad Bk Al B 4 d o ¢

IV. FINDINGS AND ANALYSIS

Introduction

This chapter presents and analyzes the findings of this
study. The Findings and Analysis Chapit:r presents the
findings of the numerical computation application, the
simulation aéplication and the interactive text file pro-

cessing application as they apply to the research questions

proposed in chapkter one, The original prograas, cranslated
programs, and the output for these programs which generated
the data for these findings, are found in Appendices A
tarough M.

The program chosen to evaluate Ada's suitability in
naner ical computation applications was originally written in
FORTRAN and is titled TRAP3. TRAP3 computes the approximate
area under a curve described by a function defined in the
program using tne Trap=szoidal Metnod. The original program
consisted of 3 main program and one subroutine. The origi-

nal TRAP3 program is found in Appendix A. The Ada line-by-

line TRAP3 programs are found in Appendices B, C and D. The
Ada redesign TRAP3 programs are found in Appendices E, F, G
and H (15: 287-2438).

The program chosen to evaluate Ada's suitability in a

sinulation application was originally written in FORTRAN and

Py

34




LA aah aoa baa oo o

is titled TRUCK. TRUCK is a simulation program that models

a single server gqueue with interaccival times of 4.33 per
hour and service times of 8.25 per nour. The program out-
puts a variety of results corresponding to the simulation.
The original program consists of a main program and six
subroutines. The original TRUCX prograas are found in
Appendices I and J. The Ada line-by-line TRUCK programs are
found ian Appendices K, L and M. The Ada redesign programs
are found in Appendices N, O, Q and R (1l: 76-83).

The program chosen to evaluate Ada's suitability in
file processing was originally written in Pascal and is
titled LIBLIST. LIBLIST is an interactive text file proc-
essing program which updates a library file system. The
original program LIBLIST consists of a main program and five
procedures. The original LIBLIST program is found in Appen-
dix 3. The Ada line-~-by-line program is found in Appendix T.
Th2 Ada redesign programs are found in Appendices U, V and W
(22: 217-225).

The findings of this research are organized as they
pertain to the cesearch questions proposed on page five. 1In
presenting the results of this research, the findings of the
line~by-line translation are presented first, followed by

the Ada redesign translation findings.

35




R e CPR R S . (SR S S G gy N NN . SRS Smh e Sten e o —

Functional Equivalence

Research Juestion one addresses functional equivalence.
In tials r=2323rz2h, fuactional 23uivalence defines the extent
to which programs translated in Ada replicate the output of
the original programs. The results of comparing the outputs
generated during this research indicated that the Ada trans-
lated programs did c2plicate the original programs. Howev-
er, tiere were slight differences and difficulties encoun-~
tered during the resear:a, 22l they are addressed below.
Qutput listings £or the orijinal programs are found in
Appandices X, DD, EE and KK. The Ada output presented below
13 taat jeneratad wnhile using the Verdix compiler.

Jutput froa the Ada line-by-line translation of the
TRAP3 prograa resulted in virtually identical output when
compared to the orijinal FORTRAN program. The TRAP3 FORTRAN
and Ada line-by-line translation outputs are in figures I

and II.

Trapezoidal integration with end correction

1 4,44444
2 1.73535
4 2,13427
8 2.13111
16 2.19675
32 2.19719

54 2,19722
128 2.19723

Ar2a = 2.19723

Fi3 1. FORTRAN: TRAP3 Output

36

.....................................................................




Trapezoidal integration with end correction

1 4.44444444E+39

2 1.70534979E+38

4 2.13427396E+04d

8 2.1911681L7E+08J

L6 2.19675417E+0840

32 2,19719294E+0D

64 2,19722256E+4d0

128 2.19722445E+839

Area = 2.19722445E+83

Fig 2. Ada: TRAP3 Qutput (Line-By-Line)

Ta=z only difference in tne two TRAP3 outputs is the
oracision of real numoers used in performing numeric compu-
tations. From the output, Ala 2xpressed nine digits of
precision, whereas the FORTRAN output expressed six digits
of precision.

This difference is easily rectified using the
facilitizs of Ada. While FORTRAN does not allow designating
tne pracision of real numbers, Ada has such a facility. B8y
declaring in Ada, 'typ2 six is digits 6;', the precision of
objects declared as type six are constrained to six digits
of precision. Therefore, executing the ida program with
objects of types six instead of type float, results in output
identical =» tihat of thea FORTRAN program. The Ada output

with six digit precision is in figure III.

37




rogpwpo> PP PR PP~y

Trapezoidal integration with end correction

4.:4444E+00
1.78535E+349
2.13427E+09d
2.191118+99
15 2,19675E+09
32 2.,19719E+83
64 2.19722E+09
128 2.13723E+99

4

[6 TN N

* ’
l'l'l

- l.77~'-"

Area = 2.19723E+29

Fig 3. Ada: TRAP3 Output (With 6 Digits Precision)

As 1 pouvat of comparison, when using the 1.5 TeleSoft
ouwpiler, real number precision was eight digits, indicat-
ing that, Jefault real number precision is implementation
jepenaent. Th2 source code listings for the Ada line-by-

2 “r1tsiicoon Lising tane TeleSoft-Ada compiler version 1.5
App2zndix 3. The output listing is in Appendix Y.

Tne Ada r2i23137, 33 witn the lin2-by-ii1y2 translation,
t-suit2d 1n dutput identical to tnat of tns orijinal,
se.tpan listings for the default FLOAT version and the Ada
r=2desi3n s1x Ja2c-inal 1ijit version are givan in Appendices
33 311 17 r-s3pectively. Output listings for the ada line-
9y-line programs using the Vads compiler are given in Appen-

jices 2 and AA.

33

..............

S PSR iy AP




e PPy S — —_—

| Tne FORTRAN TRUCK program and the Ada line~by-line
translation resultad in sinilar output. Again, a3 in TRAP3
precision factors created a slight difference in the output.
Th2a PRUCK FORTRAN and Ada line-by-line outputs are in fig-

ar2s IV and V.

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER

QUSUE.
D3EED = J.567000084+03
MEAN ARRIVAL TIME (MIAT) = 9.3333
MEAN SERVICE TIME(MSVT) = Jd.25379
PROPORTION QOF TIME DOCK CREW IS BUSY = 2.73
MAXIMUM LENGTH OF WAITING LINE = 15
AVERAGE TIME TO TRANSIT SYS. d.388 HOURS. .

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.41

SIMULATION RUN LENGTH 589.36 HOURS..

NUMBER OF TRUCKS UNLOADED = 1599

NUMBER OF RANDOM NUMBERS USED = 33437

AVERAGE NUM3£R OF UNITS IN SYS.= 2.379

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1237.228

({TRJCXS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.9547

Fig 4. FORTRAN: TRUCK Output




CRLI A A e M i A A s B e 4 B B g B a ot g e o 4 sed o s sam abe oas e ad R SREE RV

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
, SERVER QUEUE

] O5830= 5.67000009E+22
{ MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME(MSVT)

3.33333333E-91
2,.58490804093E-01

] PROPORTION OF TIME DOCK CREW IS BUSY = 7.30942538E5-91
MAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TIME TO TRANSIT SYS. 8.94888941E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 5.66666667E-83

SIMULATION RUN LENGPH 5.09356313E+@2HOURS.

NUMBER OF TRUCKS UNLOADED = 1509

NUMBER OF RANDOM NUMBERS USED = 30087

AVERAGE NUMBER OF UNITS IN SY35.= 2.37807647E+329
fOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1,20721341€E+83 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2,95470962E+30

Fig 5. Ada: TRUCK Output (Line-By-Line)

Fh2 precision problem created a few difficulties in
replicating the FORTRAN TRICK output into the Ada output.
In the TRUCK program it was necessary to generate random
numbers. To have identical output, the random number string
generated for the original and translated programs had to be
ij2ntical. To insure this, th2 original TRUCK program was
nodified to include a random number generator subroutine

'ggups' which was common to Joith prograns, However, even

49

Cle
at

e a4 g o4




AR L A/ B et B e et S bl ol ol i Sl e e dedh o T 1

with an identical 'ggubs’ subroutine, the precision differ-

ence in performing operations of real numbers created two

different strings of random numbers, thus resulting in two
x diff2renc outputs. This was rectified as in TRAP3 by desig-
nating the digits of precision in the Ada subroutine

'ggubs' to six, therefore the random number strings were

identical, resulting in similar output. The 'ggubs' subrou-

tines are found in Appendices I and L.

Another difference in the outputs is that the number of
digics of precision actually in the FORTRAN output can be
limited by the formatting features of FORTRAN, The FORTRAN
fornatting statement allows the designation of the number of
digits to be output for real numbers and integers. Ada
lacks the necessary library packages needed to duplicate
this features of FORTRAN's formatting capability at present.
Howevar the same results could be generated using Ada by
declaring types with the required precision and by then
axplicitly convarting the values to the designated type

prior to outputting. For example,

type six _digits is digits 6;

sum : float;

41

, . . L o . R I - K oLt et (SR R L P U SR
S e B T R ML P N e At
a TR TN N SRR RIS < - - ~, L AT AP L PR PR VR o W v




B PV o ey gy Yy

in this case sum is expressed as 0.33333333E00 while new_six
is expressed as 0.33333E98.

The output of the Ada readesign of TRUCK experienced the
same problem of generating id=atical random number streams
as did the line-by-line translation. The problem was
overcome in the manner described above.

While the line~by~line translation generated output
almost identical to that of the original FORTRAN version,
two of the performance .mneasures generated by the Ada re-
design consistantly deviated from the line-by-line transla-
tion and original by one.

One of the measures which differs is the maximum queue
length., The deviation is due to differences in the main-
tenence of each programs' respective gueue.

When an arrival is generated in the Ada redesign
program the gueue length index is bumped and the arrival
time 1is stored in the queue at the position given by the
index irraspective of the condition of the queue. The
index, therefores, always points to the last element in the
gueue. The FORTRAN original and lina-by-line translation
check the condition of the gueue and if the queue is empty
then the arrival time is nard-coded into the first element
in the gueue but the the queue length index is not incre-
mented. The 1index is bumped only when tne queue is not
; empty; the index is always one less than the number of

elements in the queue. To orevent the last element in the

[




queue from being overwritten,

AR S it A Sl Al Sl M B sl Sl S SaSh Amh Shed o ay:

the progran indaxes the queue

with a local variable assigned the value of the sum of the

incremented Jueue length index and tne gueue busy flag.

The relevant code is shown in figure VI.

IF(LST.22.1) GO TO 24

LST=1

CHKOUT (1)=CLOCK

GO TO 144
LIT=LQT+1
I=LQT+LST

23

CHKOUT (I)=CLOCK

IF(LQT.GT.MQ) ME=LQT

149

Wnere

LST
CHXD2UT
CLOCK
LQT

M2

I

Fig 6.

Since the queue
the actual number of

‘jueue length will oe

Quaue odusy flag.

Nueue,

Current system time (arrival
Queue length index.

Maximuia queue length.

Local variabple.

time).

Check of Queue Condition

length index is always one less than
elements in the Jueue, the maximum

likewise. Therefore, the original

FORTRAN code which indexes the queues is in error, and the

Ada redesign projcaa

propecly indexes the queue. This

axplains the difference in the maximum queue length output,




The other difference in output between the Ada redesign
and the original is in the measure of the number of random
numbers used in the simulation. The Ada redesign is appar-
ently always one low. 1In fact, the number given by the
redesign is the actual number used in both programs. The
apparent deviation is due to differences in the way each
random number is picked from the stream in the two programs.,

The redesign initializes the count to zero and bumps it
immediately before the number is used, while the original
initializes the count to 1 (the array index) then bumps it
immediately after the number is used. The index will always
be pointing to the next (unused) random number in the stream
and will be one high at the conclusion of each iteration of
the simulation.

OQutput listings from the Ada redesign translations of
TRUCK are in Appendices II and JJ. The Ada line-by-line
output listings are in Appendices FF, GG and HH.

A comparison of the output for the Pascal LIBLIST and
Ada line-by-line LIBLIST is identical. No difference is
evident in the manipulation of output between the two pro-
grams. A sample of the Pascal LIBLIST and Ada line-by-line

LIBLIST output is in figure VII.

44

A A A K O.p




DA A A i ark sal ael o 0 S 0 & ar B aoa T DR 4 RO s

WAR AND PEACE
LEO TOLSTOY

142
TOM SAWYER
MARK TWAIN
203

INTRODUCTION TO PASC
RODNAY ZAKS
340

END OF LIBRARY FILZ

Fig 7. Sample of LIBLIST Qutput

The only diffzrances between the output of the Ada
redesign of LIBLIST and the Pascal and the line-by-line
translation are cosmetic: tne format of the menu and output
listing are different. Though the line-by-line translation
and the redesign use different technigues to accomplish the
objective, (linked-list using access types versus chained
list) a1l three programs will insert and delete a book from
the list, as well as print the list in ascending order by
call number. Source code listings for each of the LIBLIST
programs are in Appendices S, T, U, V and W. Output list-
ings for each of the LIBLIST programs are in Appendices MM,

LL and MM.

Storage Efficiency

Research question two addresses the degres of
difference in the lines of source code and the size of the

executabls code files ragquired to duplicate the output

45

R e e T e e e T e e T e T e T e e e e e AT T e T T T T s e T e i
.........................................
A e et . L T A N S o m e et e T e T e e e Tt et T R T T e e L et e

. AN I Tl i) G T T AP LR T T T R I T RS T

.................




b il - g O g LA N A a SV S S T Mo a2t v S0 I e S ad — ——— T P W T T Y W Y ¥ T~ y——¥~ .~ « -~ -

between the translated and original programs. As a note of
clarification, for this study a line of source code is
defined as follows:

1. A carriage return depicts a line of source
code,

2. Comment lines and blank lines are not counted :
as a line of source code.

In comparing the Ada line-~by-line programs against the
original programs, the Ada programs required more lines of
code to replicate the FORTRAN output, and virtually the same
number Of source code lines to replicate the Pascal output.
The number of lines of code regquired in the Ada and the
original programs are outlined in Table I,

TABLE I
Lines of Source Code
TRAP3 TRUCK LIBLIST
FORTRAN 37 218 -
Pascal - - 197
Ada (line) 59 253 201
Ada (redesign) 938 313 209

The primary areas which created the differences in the

.
sl AN,

required source code in the FORTRAN versus Ada line-by-line 1

code were:




R W WO VT

l. Declaration and Initilization of Objects. 1In
the Ada TRUCK program, the main program required the Jdecla-
ration of 22 objects and three types within the specifica-
tion part of the program, This was necessary sO that the
objects could be passed as arguments and be visible in the
subroutines. The FORTRAN program oan tha other hand used two
common statements to .make the objects visible within the
subroutines. Quantitatively the specification part of the
Ada line-~by-line TRUCK program had 21 lines of code, while
the declarative portion of the FORTRAN program had 12 lines
of code.

Although FORTRAN can declare and initialize variables
in fawer lines of code, and in fact does not require the
axplicit declaration of variables, Ada requires the declara-
tion of all types and variables which aids in the maintain-
ability, understandability and the capability to debug pro-
grams.

2. Language Feature Differences. A few
differences in the type of f=atures the FORTRAN and Ada
languages support, created a few lines of difference in the
coding. 3ince Ada does not have the FORTRAN feature of
statement functions, the line~by-line translation reguired
two additional functions in the TRAP3 program. The FORTRAN

TRAP3 used the two statement functions:

F(X) = 1.3/X and DF(X) = -1.8/(X*X)

——— T T T Y ,-T




whereas Ada necessitated writing two functions to duplicate
the above statements. The two additional functions required
ten additional lines of code, i.e. inclusion of specifica-
tion and body parts, and the return statement. This differ~
ence can be seen in Appendices A and C.

In the main body of the FORTRAN TRUCK program the
conditional goto and the goto statement was used four times.
Ada does have a goto feature, however, since Ada does not
promote the use of goto statements, it was not used in the
TRUCK line-by-line translation. Instead, an if-then-else
structure was used to replicate what the original program
was doing with the goto statements. Using the if-then-~else
created additional lines of code over the goto.

To demonstrate the goto in Ada, it was used in the
TRAP3 program. Appendix C demonstrates the use of the goto.
It basically operates in the same manner as in FORTRAN,
nowever with limitations. The scope of an Ada goto is
limited in that the execution of a goto can not transfer
control into a compound statement such as an if, loop,
accept, case, block, or accept statement, i.e. Ada gotos may
transfer control only within the same lexical level.

3. 1/0 Differences. The single largest
difference in the number of lines of code required to repli-
cate the original FORTRAN outputs involved differences in

output facilities. The FORTRAN provision of formatting

48

LAl R S A gl Batl Mk S s Sl Jeuth S0 and el tesh sl e IR

o ST - T A .

N NCNE
YN SR ST S CR L AR P
P AL ADVE T P T VR G WA W A oy

T T ey

adimmdat o o -

Ca ket 8 Ao e iy

'.
e a vl




allowed the FORTRAN programs to output results in fewer
lines of code than the Ada line-by-line programs., It re-
guired 22 additional lines of Ada TRAP3 code and 35 addi-
tional lines of Ada TRUCK code to replicate the original
output in Ada. Reasons include; attaching the TEXT_IO
package, instantiating the generic float_io and integer_io
packages, and the number of put and new_line statements
required. Appendices A, C, I and L show the I/O
differences,

As is shown in Table I the Ada redesigns required
significantly more lines of code than the FORTRAN originals.
In addition to the reasons given for the differences between
tnhe originals and the line-by-line translations, two others
account for the additional lines needed to duplicate the
original Ada.

First, in both the TRUCK and TRAP3 programs, the Ada
r2design encapsulated type and subprogram definitions in
packages. This construct requires each subprogrun specifi-
cation to be entered in the package specification as well as
the package body, resulting in code redundance.

Another cause of the increase is the way the code was
assembled to enhance readability. This accounted for most
of the additional code.

Included here would be individual object declarations,

even for objects of like type. An example might be:

49




Rl - T Ty —y—
1y A Ral g -« N - " a——— . , Pp— S

T T T T VYT w T Wy

UPPER_BOUND : FLOAT;
LOWER_BOUND : FLOAT;
TOLERANCE : FLOAT;
AREA : FLOAT;

rather than
UPPER_BOUND, LOWER_BOUND, TOLERANCE, AREA : FLOAT;
Another technigue was to break long lines of code into
smaller, more readable lines such as:
AREA := (F(LOWER_BOUND
+ F(UPPER_BOUND))
* (UPPER_BOUND =~ LOWER_BOUND)
/ 2.9;
rather than

AREA := (F(LOWER _BOUND + F(UPPER_BOUND)) * (UPPER_BOUND
- LOWER_BOUND) / 2.9;

There was very little difference between the Pascal,
Ada line-by-line, and Ada redesign LIBLIST programs. This
could be expected since Ada is a Pascal based language. The
Pascal program required 281 lines of code, the Ada line-by-
line required 197, and the redesign required 289, The
difference being accounted for by instantiating the integer
output package in Ada and the use of packages in the Ada
redesign.

To compare the size of the executable code files the
'ls -al' command on the UNIX operating system was used.
This command shows the size of the executable code files in
bytes. 1In all cases, the Ada code required more bytes »Of

storage space for the executable code. Table II shows the

size of the files required.

..........




A Rt MYy TT Tl ryYyvTvrTeYT

TABLE II

Size Of Exacutable Code Files

TRAP3 TRUCK LIBLIST
FORTRAN 36864 49960 -
Pascal -- -— 26624
Ada (line) 53488 69632 64512
Ada (redesign) 64512 63638 68608

Probable reasons for the size discrepancy of tne

executable code is the refinement of the compilers. The
early versions of the Ada compilers are obviously less
efficient, as can be seen by comparing the Pascal LIBLIST
and the Ada line-by-line LIBLIST programs., The two men-
tioned programs are of the same relative size and are per-
forming the same functions, however the size difference of

executable code files is gquite considerable.

Execution E2fficiency

Research question three addresses execution efficiency.
The Unix 'time' commnand was used to find the CPU times,
Running each of the programs five times each resulted in the

average execution times as shown in Table III.

51

................................................................



e arl oy

TABLE III

Execution Times

TRAP3 TRUCK
FORTRAN 2.02 sec 0.67 sec
aAda (line-by-line) #@.44 sec 8.12 sec
Ada (redesign) 2.383 sec 5.18 sec

The Ada program in all cases required more CPU time to
exacute the programs. The probable reason for the difference
is that the FORTRAN compiler is a more refined, more ad-
vanced generation compiler, whereas the Ada compilers are
virtually in their infancy.

The CPU runtime of the Pascal LIBLIST programs were not
recorded. Due to the nature of the Pascal LIBLIST program,
i.2, an interactive text file processing program, finding
execution times did not appear to be of any relevance to
this research. However, in executing the programs there was
not any noticeable differences in response time between the

Ada and Pascal programs.

Maintainaoility and Transportability

Research question four compares the maintainability and
transportability of Ada programs against that of the select-

2d programs. The manner in which this gquestion was handled

52

B R I ;;;1{.;gu;:g-_-;3;513;,1a;5;=;u;3;u'4




R b R P Ak At i

was by first describing the problems encountered and the
actions that were necessary to compile and execute the
original programs on the UNIX system with the available
facilities (compilers). Second, describe any differences or
problems encountered in translating the original programs,

and third, address tne problems faced in compiling and

exXecuting the Ada programs on the different Ada compilers
availapble for this research. By the description of the
above actions, subjective conclusions can be drawn on this
important feature of a programming languaje.

The original TRAP3 program was taken from FORTRAN for

Scientists and Engineers by Alan R. Miller. The original

program was compiled with Microsoft's FORTRAN-80, Version
3.4 compiler.

The original TRAP3 program called for passing two
statement functions from the main program as arguwents to a
subroutine. The FORTRAN 77 compiler used in this study
would not allow such an operation. The changes necessary to
compile and execute the program involved placing the state-
ment functions directly within the subroutine. Therefore
one major change was reguired to compile and execute the
original TRAP3 program.

The Ada line-by-~line translation of TRAP3 was

originally compiled on tne Tele3o0ft 1.5 compiler. In trans-

lating to Ada, the only difference encountered in the coding

was the lack of statement functions in Ada. The Ada trans-

53

.-

...........

LN VA WG WA Ty




lation as mentioned before, regquired writing functions to
represent the FORTRAN function statements,

The output of the TRAP3 program run with the Verdix
compiler was slightly differant because of the size of the
largest integer. The output was shifted five spaces to the
right on the scre2n because integer last under Verdix is
2147483647 Whereas it is 37567 under TeleSoft 1.5., indi-
cating implementation dependence.

The result of this is that the FORTRAN TRAP3 program
required one syntax change in order for the program to
compile and run, whereas the Ada TRAP3 proJjram when moved
from the TeleSoft 1.5 to the Verdix compiler had zero syntax
errors and successfully compiled and executed.

The original TRUCK program was taken from Discrete-

Event System Simulation by Banks and Carson, and modified

and compiled with the FORTRAN extended version 4 compiler.
The original TRUCK programs are found in Appendices I and J.

Wnen the FORTRAN TRUCK program was transported to the
UNIX system and compiled with the FORTRAN 77 compiler, the
following conditions existed:

1. The original program made access of the IMSL
library subroutine 'GGUBS' to generate random numbers. when
transportad to the UNIX ASC system initially, IMSL was yet
to be implemented, therefore the program could not compile.
The program was modified by writing a random number genera-

tor subroutine called GGUBS also.

54




2. The original FORTRAN program consisted of 30849
customers (trucks) and an array of dimension 6508 with real
number elements (random numbers). Due to a storage problem
with the Ada compiler, which will be explained later, the
TRUCK problem was reduced to have 1588 customers and the
need for only 3580 random numbers, To modify the FORTRAN
TRUCK program to include the lesser number of customers and
random numbers ragquired one change involving the number of
customers (NCUST=30d0 to NCUST=1584), and eight modifica-
tions were necessary to change the number of random numbers
required and the dimension of the random number array (NR=6-
533 to NR=3533 and seven changes to R(6583) to R(3500) which
was in each of the common blocks).

In contrast, modifying these two changes in the Ada
line-by~line TRUCK program required only two modifications
to the program (NR:=30880 to NR:=1528 and by declaring an
array type 'type RN is array (integer range 1 .. 65@8) of
float;' only requires the 6508 be changed to 3509 once.

The Ada line-by-line TRUCK program was initially
compiled with the TeleSoft 2.2 version. The following
problems were encountered with the Ada line-by-line program
in developing successful output:

1. The TeleSoft 2.2 compiler severly restricted the
array size. Although the Ada TRUCK program with an array
dimension of 65d8 would compile, it would not execute. The

following execution error was raised: "Storage Error

55

P

PO




(Sec_Stock_Overflow) Raised in Main Unit on Line 4 83."
Line 483 pointed to the subroutine.'GGUBS'. In trying
different array sizes, the largest dimension the TeieSoft
2.2 would support was an array of size 622.

2. Compiling the same program with a 6504 dimensioned
array with the 1.5 TeleSoft compiler resulted in the
following compilation error: "Error: Data Size of 3Seg: 1
Proc: 1 is too big." Using different array sizes, the
dimensional size of approximately 4089 was the extent the
1.5 TeleSoft compiler could support. Therefore the original
TRUCK program was modified to use 1580 customers and a 3589
dimensioned array of random numbers.

3. Truncating versus rounding of numbers created
oroblems in maintaining the Ada program. This problem was
encountered in generating the random number string. The
random number denerator alogrithm required the explicit

conversion of real numbers into integers. 1In the expres-

sions:
X = 2,7762
Y = INTEGER(X)

the FORTRAN 77 compiler truncates the value to 2. The Ada
1.5 Tele30ft compiler rounded the value to 3. Therefore the
Ada 'GGUBS' subroutine required modification. However, when
using the Verdix compiler, the above Y value is truncated to
the value 2, so again the 'GGUSS' subroutine required modi-

fications again. All of this indicated that the explicit

56




................
...........

conversion from real to integers is implementation depend-
ent.

Converting from the TeleSoft 1.5 to the Verdix required
modifying the random number generator as mentioned above.
Other minor differences experienced included getting warn-~
ings for objects passed as arguments in subroutines without
being initialized, and the need to attach a package with the
natural log function for the service time and arrival time
alogrithm. Natural logs are an intrinsic function of FOR-
TRAN, however such functions are not standard in Ada.
Therefore, a natural log function was written and encapsu-
lated within a package. The natural log function is found
in Appendix P.

The original LIBLIST program was taken from

Introduction to Pascal, Including USCD Pascal by Rodnay

Zaks. The LIBLIST program involved processing a library
file to include inserting and deleting records to a text
file. The program was modified to include a procedure for
convenience which involved viewing the entire library file
interactively. The original Pascal LIBLIST is found in
Appendix S.

In transporting the Pascal LIBLIST program to the UNIX
system with the avaliable Pascal compiler, only one major
change was necessary to compile and execute the program
LIBLIST. The original LIBLIST program as extracted from the

text was typed entirely in upper case. The Pascal compiler

57

.....................
....................
.........................

..............
..............................
.......
-----



S 2 e e i S E R e A S i vt B et e B Banae amamas amean _ona oo oo o o o
-~ e N . Chad R - '~ . , - .
. BN o ey AN Sah Aad el gnd Shdh and Ah B g

would not compile keywords, types and filenames entered in
upper case.

Since the Tele3oft 1.5 compiler does not support
! generics and the TeleSoft 2.2 compiler was removed from the
operating system the research was conducted on, the Ada
. LIBLIST program used the Verdix compiler exclusively.

In writing the Ada line-by-line LIBLIST program, there

h were no portions of the Pascal program which could not be
duplicated due to the similarity of Ada and Pascal. The Ada

and Pascal code was very similar. The original program used

access types to link the library files in numerical order.
Ada has incorporated the access type feature, and with very
faw syntax differences functions exactly the same as the
Pascal access type.

In the Ada redesign effort, all three original programs
were translated, compiled, and executed using the Verdix
compiler. However, since the Telesoft-Ada compilers were
removed from the system upon installation of the Verdix
compiler, only the TRUCK program was compiled with the
Telesoft software. No comments can be made regarding the
transportability of the redesigned TRAP3 and LIBLIST pro-

grams.

When transporting the Ada redesign of TRUCK from the
Telesoft to the Verdix compiler no code changes were re-

quired in the main (calling) program and only the instanti-

ation of FLOAT_IO and INTEGER IO was required to successful-

!
3
&
}
i
-
b
h

58

R .

------------------ - B .
ot e DY T YL L L L

ratalalatelealel asaedat o 0




eT———"

Mol s s S Syt @ a0 e an oty

ly compile the SIMULATION_ROUTINES package. As with the

movement of the line-by-line translation from Telesoft to
the Verdix compiler, the same changes for the same reasons
were necessary in the redesigned program for proper execu-

tion with the Verdix.

Source Code Readability

Research question five addresses source code
readability. The readability of Ada code is hailed as one
of the language's key features. This section presents the
findings on the differences between Ada source code and the
original programs' source code.

While Ada affords the programmer a rich set of tools
with which to compose very readable code, it is apparent
after even a cursory inspection of the Ada line-by-~line
translations that it is possible to write bad code in Ada.
The Ada redesign effort was to translate the original code
into Ada using all of the language features necessary to
oroduce structured, readable and functionally equivalent
code,

In addition to using the built-in features of Ada
designed to enhance structure and readability, the program-
ner used the following conventions in coding the redesigned
programs:

1. Individual object declarations.,

2. Grouping of objects of like type at declaration.

59

s




3. Vertical alignment of the colon (:) and assign
syabol (:=) at object declaration/initialization.
4, Indent all code between program unit and begin

clauses and between begin and end clauses.

5. Follow standard rules of indention for loop, if,
and case structures.

6. Vertical alignment of the goes-into symbol (=>) in
subprogramn specifications, calls, and case structures.

7. Vertical alignment of the assign symbol (:=) when
oossible in lists of assignment statements.

3. Use of object names as meaningful as possible,

9. Use of lower~case for all Ada reserved words and
attribute invocations, and upper-case for all object names
and type marks.

By following these rules as closely as possible the Ada
redesign effort achieved significant improvements in reada-
pility and undarstandability over the original code. One of
the bast examples of this improvement is the difference
oetween the calling programs of the FORTRAN and Ada redesign
of TRUCK. The FORTRAN code is shown in figure VIII,.

It is apparent that the author of this code had no
concern for the readability of the software as none of the

rules listed above were followed. Even the comments, rather

than ennance the readability of the code, tend to clutter

the code,

60

.........................................
o e




C TRUCK PROBLEM~-VARIANT OF PP 77-82 IN BANKS AND CARSON.
PROGRAM TRUCK
REAL MIAT,MSVT
INTEGER NR
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHKoUuT(149) ,B,MQ,S,F,ND,IIR,R(3508) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
II=1
: DSEED=567.0
1 NUMEVS=2

MIAT= 1.9/3.0

MSVT=,25

NCUST=15239

WE WILL USE GGUBS TO GENERATE A STRING OF RANDOM #'3

ROUTINE GGUBS

NR=3539

CALL GGU335(NR)

IIR WILL INDEX THE RANDOM NUMBER GENERATOR.

IIR=1

CALL INITIALIZATION ROUTINE

CALL INITLZ

) 0

CALL TIME-ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.
38 CALL TIMADV

GO0 O O

VARIASLE "IMEVT" INDICATES THE IMMINENT EVENT.
IMEVT=1 FOR AN ARRIVAL.
IMEVT=2 FOR A DEPARTURE.
GO TO(48,59) ,IMEVT
49 CALL ARRVL
GO TO 39
CALL DEPARTURE ROUTINE
59 CALGL DPART

Qo

O

CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURLN TO
#30
8 IF(ND.LT.NCUST) GO TO 34
IF(II.EQ.1) DSEED=567.0
IF(II.EQ.18) DSEED=2717.3
CALL RPTGEN
C WHEN SIMULATION OVER GENERATE REPORTS.
STOP
END

QO

Fig 8. Sample of FORTRAN Source Code




with SIMULATION_ ROUTINES ; use SIMULATION_ROUTINES;

procedure TRJZK 3 [AMUJLATION is
MEAN_INTER _ARRIVAL TIME : FLOAT /3
MLAV DERVIV. A £ s FLOAT := ﬂ 25 ;
S5TATS ¢ STATISTICS;
SERVICE_QUEUE : QUEUE;
RANDOM_NUMBER ¢ RANDOA_NUMBER_RECORD;
begin
whila STATS.REPETITION < 13 loop
INITIALIZE (STATS,
3A’VISE_)JEUE,
MEAN_INTER_ARRIVAL_TIME,
RANDOM_NUMBER) ;

while 30AU0S.TOTAL DEPARTURES < 1584 loop
if 3TATS. NEXT . ARRIVAL < STATS. NEXT_ DEPARTURZ then
PEQ”RATJ ARRIVAL (STATS,
SERVICE_QUEUE,
MEAN_INTER_ARRIVAL TIME,
MEAN SERVIvb TIME,
RAW)31 JUHBER) 3
else
GENERATE_DEPARTURE {STATS,
SERVICE_QUEUE,
MEAN SERVICE _TIME,
RANDOA NUABER) ;
end 1if;
end loop;
GEZNERATE REPORT (STATS,
SERVICE_QUEUE,
MEAN _ INDIR \QRIVAL_TIME,
MnAﬂ SERVICE TIME,
RANDOM NUMBER) ;
end loop;
end TRUCK_SIMULATION;

Fig 9. Sample of Ada Redesign 3Source Code

T2 Ada relesign version is shown in figure IX. The

difference is striking. The code is clean, understandaple,

stractuca2d, and functionally 2j11ival:nt, The problem of




A I BT Al S D g Jare a3l Aot Al A Al A sl DI et ase aave daee o

overly long argument lists, which may have been a concern
due to Ada's lack of the 'common' statement, was overcome by
building record types of related data objects
(RANDOM_NUMBER_RECORD, STATISTICS, QUEUE) and passing the
record objects. While each of the rules listed above as
well as features built into the language (end if, end loop,
begin/end etc.) enhance the readability of Ada code, the
most significant feature of Ada with regard to readability
is the capability to create meaningful type and object
names.

Again, the TRUCK program provides a good example. The
FORTRAN and Ada code which initialize variables before each
iteration of the simulation is shown in figures X and XI.

The lack of meaningful variable names in the FORTRAN
routine due in part to FORTRAN being limited to variable
names not exceeding six characters, makes the code very
difficult to follow. To translate the code the Ada program-
mer was forced to use the strings printed in the report
generating routine to decipher many of the names. The Ada
code, however, with the use of meaningful names, is easy to
follow and leaves the reader with little doubt as to the use

of a given variable.

63




F"_‘. - B > D AR NCE S e CAMECR AL At it i S AhaciNaS Sam e Saarie an e 2 T W WU I [ v W ey vy -y v, ~w—n

¢ SUBROUTINE INITLZ
2 REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,
1LsT,TLE,CHKOUT(14d) ,B,MQ,S,F,ND,
2IIR,R(6500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

SET SIMULATION CLOCK TO ZERO.

ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
INITIALIZE CUMULATIVE STATISTICS ro 9.

CLOCK=0.0

IMEVT=0

LQT=4

LST=8

TLE=4

B=4

MQ=4d

S=0

F=¢

ND=39

GENERATE TIME OF FIRST ARRIVAL,IAT, AND SCHEDULE FIRST
ARRIVAL

IN FEL(1)K.SET FEL(2) TO "INFINITY" TO INDICATE THAT A
VDuPARTURE IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY.
RR=R(IIR)

X= -103(RR)

X=X*MIAT

XX7r=1.8

FEL(1)=CLOCK + X

FEL(2)= 1.3E+30

IIR=[[R+]

RETURN

END

aOn0nOon

[CReXe X®!

Fig 9. Sample of FORTRAN Declaration and Initialization of
Objects




Fudaiy

RAEARAEADACAE A A A A A G A A A ARt e a e e e d e a0 an s ot NN

procedure INITIALIZE
STATS
SERVICE_QUEUE
MEAN _ INTER ARRIVAL TIME
RANDOM NUMBER

in out STATISTICS;

in out QUEUE;

in FLOAT;

in out

RANDOM_NUMBER RECORD) is

e o0 se e

ARRIVAL TIM4E : FLOAT;

begin
STATS .REPETITION := STATS.REPETITION + 1;
RANDOM_NUMBER.DSEED := RANDOM_NUMBER.SEEDS
(STATS.REPETITION) ;
RANDOM_NUMBER.COUNT 1= @;
RAN (RANDOM_NUMBER) ;
ARRIVAL_TIME := MEAN_INTER _ARRIVAL TIME
* (-LN (RANDOM_NUMBER.NUMBER)) ;
STATS .CLOCK 1= 0.9;
STATS.TIME_LAST_ EVENT 1= 0.9;
STATS.SERVER_BUSY TIME := 3.3;
STATS.TOTAL_TIME IN _SYSTEM := 0.0;
STATS .TOTAL_ARRIVALS =0
STATS, TOTAL_DEPARTURES =0
STATS.MAX_Q_ LENGTH =0
STATS.FOUR_HOURS_IN_SYSTEM := @ ;
STATS ,NEXT_ARRIVAL := STATS.CLOCK
- + ARRIVAL_TIME;
3TATS .NEXT_DEPARTURE := 1.0e30;
SERVICE_QUEUE.LENGTH = 0;
SERVICE_QUEUE.IS_IDLE := TRUE;

end INITIALIZE;

Fig 11, Sample of Ada Declaration and Initialization of
Objects

Other Findings

Research question six is included as a catch-all to

allow the discussion of any relevant finding not enuneratad

in the previous five Juestions. One such finding was uncov-

2red during the Ada redesign of the LIBLIST program.




...........

With Ada's capability to encapsulate data types in
packages and with almost no restrictions on type names, it
is not inconceivable that identical type names, even identi-
cal type Jdefinitions are in more than one package. This
would not present a problem unless more than one of these
packages were simultaneously imported by another program and
an object of tne type in guestion is declarad in the wusing
program., Tinis situation arose during the Ada redesign of
LIBLIST,

LIBLIST maintains a direct-access file of records
stored on disc. Each record contains several fields each
with information for a given book. One of the fields stores
the call number of the book. Aanother field contains a
pointer which 1links the records such that when read and
printed wihile stepping through the chain, the records will
Je in ascending order by call number.

The pointer contains the position in the file of the
next record in the chain. When these pointers are used to
read or write records on the file, they must be converted to
a type required by DIRECT_IO. That type 1is defined as:

type COUNT is 0..implementation defined;
type POSITIVE_COUNT is 1..COUNT'last;

In addition to importing DIRECT_ IO for file access, the
program uses TEXT_IO to print prompt strings to the screen.
Unknown to the programmer, TEXT_IO has an identical type

definition to that shown above:

type COUNT is d..implementation defined;
type POSITIVE_COUNT is 1l..COUNT'last;
66

..................
.............
..........

A O A YO




S TR TN N S LV INTY LYY

The problem was not so much the ambiguity seen by the
compiler, since both packages were directly visible and the
package prefix notation was not used, as was the esoteric

error messade yiven by the compiler to flag the error.

The message, "identifier undefined,” initially led the
programmer to believe that the package containing the ambig-
Jous type name was not visible., It was by accident that the
programmer found the type defined in both DIRECT_IO (the one
used in LIBLIST) and TEXT_IO. The ambiguity was resolved by
using the package name prefix notation when referencing the

type in the importing program. This illustrates the indis-

crininate use of the 'use' clause.




ot fat Rt el St il Rak S it il S St el ekl 4 ’

k V. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The primary objective of this research was to evaluate

Ada's suitability in non-embedded appli:cations. A compari-

son of the Ada translated programs against the original
programs, indicated that Ada was a suitable programming
language for the chosen applications.

The research demonstrated that the Ada translated
drojrams did r2plicate the output of the original programs.
Chapter 4 explains a Eew 0of the features in Ada, such as
designating real number precision, which facilitates the
replication of th=2 ouitput.

Although the findings show that more lines of source
code were reguired as compared to FORTRAN, it was not in our
opinion a substantial difference. As explained in Chapter
4, in tne Ada redesiyn programs the increased use of source
code contributed to the overall readability of the code.
Concerning tha iaput/output source code differ=nces, the
writing of an Ada 1I/0 formatting package to be used with any
Ada programs would eliminate that difference. <Concerning
Pascal, since Ada is a Pascal based language, the Pascal and
Ada line-by-line programs were very similar.

The findings show that the FORTRAN programs run more

ef€iciently than the Ada translated programs. Also the




FORTRAN and Pascal programs required considerably less space
in executable code files. The probable reason for this is
the degree of compiler refinement. Upon Ada compiler ad-
vancement, these deficiencies may be overcome.

It was difficult to draw any conclusions concerning
the maintainability and transportability of source code.
Although none of the FORTRAN or Pascal programs would com-
pile or execute when moved to the UNIX operating system and
using the available compilers, the Ada programs when used

with different compilers also experienced problems. The Ada

programs experienced no syntax errors when transported
between compilers, but did experience difficulties due to
implementation dependent features. For example, explicit
conversion of real numbers to integers resulted in two
different values depending upon which compiler was used.

The TeleSoft 1.5 compiler rocunded the real number, while the
Verdix compiler truncated.

One important maintainability issue was raised in the
findings of the TRUCK program, and that involved the amount
of changes reguired to modify values of parameters in the
programs. It was shown that changing two parametars like
the number of customers and the dimension of an array in the
FORTRAN TRUCK program required eight changes, while the Ada
TRUCK program only needed two changes.

This difference is primarily due to the strong typing

requirements of Ada. Strong typing can significantly in-

69

.......................
.................

PP R, Y LA B TP e T, . BN R o
- — P PO . PP G N W AR ol O S N Syl PRALIIL I U, G UL




crease the maintainability of a program written in Ada when
compared to an equivalent program written in FORTRAN,

The capability to write readable code in Ada was
demonstrated by tinlis research. However, tne production of
readable code does require a conscious effort on the part of
the Ada programmer. The Ada line-by-line programs showed
little or no improvement in readability, however, the Ada
redesign programs using meaningful object names and types,
sound program structure, and a few other simple programming
techniques, demonstrates the degree of readablility improve-
ment achievable with Ada.

This research did demonstrate that Ada could replicate
the output of the three chosen non-embedded applications.
The objective of replicating the output was achieved, howev-
er results from other areas examined such as execution
times, and storage requirements proved disappointing. The
authors feel that the results from these areas can be im-
proved through the use of mature Ada compilers, and in-
creased programmer experience with the Ada language.

This research covered a wide range of major areas
wnich influence the performance of a programming language.
Due to the range of areas examined, an in~-depth examination
of each of the areas was not possible., These areas need to

oe examined more in depth.

70




LR Mk ai ail aNEC i SN et S e aive o

Recommendations

Upon completion of this research it was evident that
more research is required on the Ada programming language.
This research was limited to three non-embedded applica-
tions. Research in other non-embedded application areas is
necessary to fully evaluate Ada's suitability in non-embed-
ded applications, It is also necessary that validated and
more mature compilers be used in any future studies. Only
once tanis is accomplished can a decision be made concerning
the ability of Ada to become the single DoD common
programming language £for all application areas.

This research covered a range of language features. A
close examination of the @naintainablity and transportability
of Ada source code needs to be accomplished. These areas
are essantial for the evaluation of Ada as a common DoD
language.

This research did not evaluate the COBOL programming
language against that of Ada. To determine Ada's suitabil-
ity in business applications, an evaluation of Ada against
COBOL applications would be beneficial.

Finally, the attributes of Ada were not addressed.
Language attributes appear to e one of the strong points of
Ada. A study of the advantages of Ada's attributes versus
features of other languages implementing similar capabili-
ties will provide a more complete evaluation of the Ada

language.

71

s a4




LA A A S A A Sl SN vl SR SV ord et —ufen Sace i e e e At dhave Sasb aen e 4 R T ” q e P T YW T o T s iy

APPENDIX A
SOURCE LISTING

TRAPEZOIDAL INTEGRATION PROGRAM
ORIGINAL FORTRAN

c PROGRAM TRAP3

Q

REAL SUM, UPPER, LOWER, TOL
DATA LOWER/1.4/, UPPER/9.9/, TOL/1.BE-5/

[FIN ¢

£(X) =1/ X, be careful of X = 3.
c
WRITE(6,101)
CALL TRAPEZ (LOWER, UPPER, TOL, SUM)
WRITE(5,194) SUM
STOP
191 FORMAT(/' Trapezoidal integration with end
1 correction')
134 FORMAT(/' Area =', Fl0.5/)
END
SUBROUTINE TRAPEZ(LOWER, UPPER, TOL, SUM)
c
c Numerical integration by the trapezoidal method.
c

INTEGER PIECES, I, P2
REAL X, DELTA, LOWER, UPPER, SUM, TOL
REAL ENDSUM, MIDSUM, SUM1, ENDCOR

F(X) =1.8 / X
DF(X) = -1.8/(X * X)

PIECES =1

DELTA = (UPPER - LOWER) / PIECES

ENDSUM = F(LOWER) + F(UPPER)

ENDCOR = (DF(UPPER) - DF(LOWER)) / 12.8
SUM = ENDSUM * DELTA / 2.9

WRITE(6,181) SUM

MIDSUM = 0.0

5 PIECES = PIECES * 2 ]
P2 = PIECES / 2
SUML = SUM

DELTA = (UPPER - LOWER) / PIECES
DO 18 I =1, P2
X = LOWER + DELTA *(2 * I - 1)
MIDSUM = MIDSUM + F(X)
13 CONTINUE

72




AR Ziea e b ca fng Jban A dh ae g va k1 v S s Sk 2l £ ~

SUM = (ENDSUM + 2.@8*MIDSUM) * DELTA * 9.5 - DELTA
1 * DELTA * ENDCOR
WRITE(6,142) PIECES, SUM
IF (ABS(SUM - SUMl) .GT. ABS(TOL * SUM)) GOTO 5

RETURN
181 FORMAT (/" 1', F9.5)
102 FORMAT (1X, 17, F9.5)

END

73




........

APPENDIX B

SOURCE LISTING
TRAPEZOIDAL INTEGRATION PROGRAM
ADA LINE-BY-LINE TRANSLATION
TELESOFT~-ADA COMPILER VERSION 1.5

-~ LINE BY LINE TRANSLATION OF THE PROGRAM TRAP3.
-~ TRAPEZOIDAL METHOD OF INTECRATION.

WITH TEXT_I0; USE TEXT_IO;
USE FLOAT_IO; USE INTEGER_IO;
PROCEDURE TRAP3 IS

SUM : FLOAT;
UPPER : PLOAT
LOWER : FLOAT
TOL : FLOAT :=

-- £(X) =1 / X, be careful of X = 3.

FUNCTION F (X : IN FLOAT) RETURN FLOAT IS
F : FLOAT;

BEGIN
F := 1.0 / X;
RETURN F;

END F;

FUNCTION DF (X : IN FLOAT) RETURN FLOAT IS
DF : FLOAT;

BEGIN
DF := ~-1.0 /(X*X);
RETURN DF;
END DF;
PROCEDURE TRAPEZ (LOWER,UPPER,TOL,SUM : IN OUT FLOAT)
-- Numerical integration by the trapezoidal method.
PIECES, I, P2 : INTEGER;
X, DEL : FLOAT;
ENDD, ENDSUM, MIDSUM, SUM1l, ENDCOR : FLOAT;

BEGIN
PIECES := 1;

74




e T T T o Al el A e B aud Andh Sl S el o B-Sg e ot

DEL := (UPPER - LOWER) / FLOAT(PIECES);
ENDSUM := F(LOWER) + F(UPPER):;

ENDCOR := (DF(UPPER) - DF(LOWER)) / 12.0;
SUM := ENDSUM * DEL / 2.2;

PUT (" 1 "); PUT (SUM);
NEW_LINE;

MIDSUM := 0.0;

<<RETRN>>

PIECES := PIECES * 2;
P2 := PIECES / 2;
SUM1 := SUM;
DEL : (UPPER - LOWER) / FLOAT(PIECES) ;
FOR I IN 1 .. P2 LOOP
X := LOWER + DEL * FLOAT(2 * I =- l),
MIDSUM := MIDSUM + F(X};

END LOOP;

SUM := (ENDSUM + 2.8*MIDSUM) * DEL * .5 - DEL * DEL *
ENDCOR;

PUT (" "); PUT (PIECES); PUT (™ "); PUT (SUM):

NEW_LINE;
IF (ABS(SUM~SUMl) > ABS(TOL*SUM)) THEN
GOTO RETRN;
END IF;
END TRAPEZ;

BEGIN
PUT("™ Trapezoidal integration with end correction");
NEW_LINE;
NEW_LINE;
TRAPEZ (LOWER,UPPER,TOL,SUM);
NEW_LINE;
PUT (" Area ="); PUT (SUM);
NEW_LINE;
END TRAP3;

75

l..-.\
TN
t p "




R N T T WY P Uy oV o ———————— v 5~

APPENDIX C

SOURCE LISTING
TRAPEZOIDAL INTEGRATION PROGRAM
ADA LINE-BY-LINE TRANSLATION USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V@24.06

-- LINE BY LINE TRANSLATION OF THE PROGRAM TRAP3.
~— TRAPEZ0IDAL METHOD OF INTEGRATION.

WITH TEXT_I0; USE TEXT_IO;
PROCEDURE TRAP3 IS

PACKAGE REAL_IO IS NEW FLOAT_IO(FLOAT);
PACKAGE INT 10 IS NEW INTEGER_IO(INTEGER);
USE REAL_IOj

USE INT_TO;

SUM : FLOAT := 0.0;

UPPER : FLOAT := 9.0;
LOWER : FLOAT := 1.0;
TOL : FLOAT := 1.0E-5;

~-- £f(X) =1 / X, be careful of X = 0.

FUNCTION F (X : IN FLOAT) RETURN FLOAT IS
F : FLOAT;

BEGIN
FfF o= 1.8 / X;
RETURN F;

END F;

FUNCTION DF (X : IN FLOAT) RETURN FLOAT IS
DF : FLOAT;

BEGIN
DF := -1.2 /(X*X);
RETURN DF;

END DF;

PROCEDURE TRAPEZ (LOWER,UPPER,TOL,SUM : IN OUT FLOAT) I3

-- Numerical integration by the trapezoidal method.

PIECES, P2 : INTEGER;

76




X, DEL : FLOAT;
ENDD, ENDSUM, MIDSUM, SUM1l, ENDCOR : FLOAT;

BEGIN
PIECES := 1;
DEL := (UPPER - LOWER) / FLOAT(PIECES) ;
ENDSUM := F(LOWZR) + F(UPPER);

ENDCOR (DF (UPPER) -~ DF(LOWER)) / 12.0;
SUM := ENDSUM * DEL / 2.0;

. PUT (" 1 "); PUT (SUM);
NEW_LINE;
MIDSUM := 8.0;
<<KRETRN>>

PIECES := PIECES * 2;
P2 := PIECES / 2;
SUM1 := SUM;
DEL := (UPPER - LOWER) / FLOAT(PIECES);
FOR I IN 1 .. P2 LOOP
X := LOWER + DEL * FLOAT(2 * I - 1);
MIDSUM := MIDSUM + F(X):;

END LOOP;

SUM := (ENDSUM + 2.@*MIDSUM) * DEL * 6.5 - DEL * DEL *
ENDCOR;

PUT (" "); PUT (PIECES); PUT (™ "); PUT (SUM);

NEW _LINE;

IF (ABS(SUM-SUM1) > ABS(TOL*SUM)) THEN
GOTO RETRN;
END IF;
END TRAPEZ;

BEGIN
PUT(" Trapezoidal integration with end correction");
NEW_LINE;
NEW_LINE;
TRAPEZ (LOWER,UPPER,TOL,SUM) ;
NEW_LINE;
PUT (" Area ="); PUT (SUM);
NEW_LINE;
END TRAP3;

77

..............................................................................

----------

............................



- - - - Bl Binche 2 - ~ o il
- - A S RN s e T R e T e e m—" T T T W W W T W W WY W=~

APPENDIX D

SOURCE LISTING
TRAPEZOIDAL INTEGRATION PROGRAM
ADA LINE-BY-LINEZ TRANSLATION USING SIX DIGIT PRECISION
vADS COMPILER RELEASE VP4.06

-~ LINE BY LINE TRANSLATION OF THE PROGRAM TRAP3.
-- TRAPEZOIDAL METHOD OF INTEGRATION, USING SIX
-- DIGIT PRECISION.

WITH TEXT_IO; USE TEXT_IO;
PROCEDURE TRAP3 IS

type six is digits 6;

PACKAGE REAL_IO IS NEW FLOAT_IO(six);
PACKAGE INT_IO IS NEW INTEGER_IO(INTEGER);
USE REAL_IO;

USE INT_TO;

SUM : six :
UPPER : six
LOWER : six
TOL 3 six :=

-- £(X) =1 / X, be careful of X = 8.

FUNCTION F (X : IN six) RETURN six IS
F : six;

BEGIN
F := 1.8 / X;
RETURN F;

END F;

FUNCTION DF (X : IN six) RETURN six IS
DF : six;

BEGIN
DF := -1.8 /(X*X);
RETURN DF;

END DF;

PROCEDURE TRAPEZ (LOWER,UPPER,TOL,SUM : IN OUT six) IS

-- Numerical integration by the trapezoidal method.

PIECES, P2 : INTEGER;

78




.......

CESTEACRA fha the Bl B Ste Mn SN S A DA SAAA A A BJs i Set Suv ot et e dih adue gl cah are a/a oo i o B

........

b X, DEL : six;
ENDD, ENDSUM, MIDSUM, SUM1l, ENDCOR : six;

BEGIN
PIECES := 1;
DEL := (UPPER - LOWER) / six(PIECES);
ENDSUM := F(LOWER) + F(UPPER);
ENDCOR := (DF(UPPER) - DF (LOWER)) / 12.0;
SUM := ENDSUM * DEL / 2.0;

. PUT (" 1 "); PUT (SUM);
NEW_LINE;
MIDSUM := 0.0;
<<RETRN>>

PIECES := PIECES * 2;
P2 := PIECES / 2;
SUM1 := SUM;
DEL := (UPPER - LOWER) / six(PIECES);
FOR I IN 1 .. P2 LOOP
X := LOWER + DEL * six(2 * I - 1);
MIDSUM := MIDSUM + F(X);

END LOOP;

SUM := (ENDSUM + 2.0*MIDSUM) * DEL * 8.5 - DEL * DEL *
ENDCOR;

PUT ("™ "); PUT (PIECES); PUT (" "); PUT (SUM);

NEW_LINE;

IF (ABS(SUM-SUM1) > ABS(TOL*SUM)) THEN
GOTO RETRN;
END IF;
END TRAPEZ;

BEGIN
PUT(" Trapezoidal integration with end correction");
NEW_LINE;
NEW_LINE;
TRAPEZ (LOWER,UPPER,TOL,SUM);
NEW_LINE;
PUT (" Area ="); PUT (SUM);
NEW_LINE;
END TRAP3;

79

.................................................
.......................................




P T————

B A Sn Bas Akt Sol Rebe St S Bt et Seds Sngh e At it Sdu IR Sl

APPENDIX E

SOURCE LISTING
TRAPEZOIDAL INTEGRATION MAIN PROGRAY
ADA REDESIGN USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V04.26

with NUMERIC_INTEGRATION; use NUMERIC_INTEGRATION;
with TEXT_IO; use TEXT_IO;
procedure MAIN is

package INT IO is new INTEGER_IO (INTEGER);
package REAL_IO is new FLOAT_IO (FLOAT) ;
use INT_IO;

use REAL_IO;

UPPER_BOUND : FLOAT := 9.8;
LONER_BOUND : FLOAT := 1.9;
TOLERANCE : FLOAT := l.0e~5;
AREA : FLOAT;

begin
NEW_LINE;
PUT ("TRAP£ZOIDAL INTEGRATION");
NEW_LINE;
AREA := (F(UPPER_BOUND)

+ F(LOWER_BOUND))
* (UPPER_BOUND - LOWER_BOUND)
/  2.9;
PUT (1):
PUT (AREA);
TRAPEZOIDAL_INTEGRATION (UPPER_BOUND,
LOWER_BOUND,
TOLERANCE,
AREA) ;

NEW_LINE;
PUT ("AREA = ");
PUT (AREA):;
NEW_LINE;

end MAIN;




APPENDIX F
SOURCE LISTING
TRAPEZOIDAL INTEGRATION ROUTINES PACKAGE

ADA REDESIGN USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V@4.06

with TEXT_10; use TEXT_IO;

package NUMERIC_INTEGRATION is

package INT_ IO is new INTEGER_IO (INTEGER);
package REAL_IO is new FLOAT_IO (FLOAT) ;

use INT IO;
use REAL_IO;

procedure TRAPEZOIDAL_INTEGRATION

(UPPER_BOUND : in FLOAT;
LOWER_BOUND : in FLOAT;
TOLERANCE : in FLOAT;
AREA : in out FLOAT);
function F (X : in FLOAT) return FLOAT;
function DF (X : in FLOAT) return FLOAT;
end NUMERIC_INTEGRATION;
package body NUMERIC_INTEGRATION is
procedure TRAPEZOIDAL_INTEGRATION
UPPER_BOUND : in FLOAT;
LOWER_BCJND : in FLOAT;
TOLERANCE : in FLOAT;
AREA : in out FLOAT) 1is
NUMBER_OF_PARTITIONS : INTEGER := 1;
PREV_NUMBER _OF_ PARTITIONS : INTEGER;
PREVIOUS_AREA : FLOAT := B.9;
MID_SUM : FLOAT := 0.0;
END_SUM : FLOAT;
END_CORRECTION : FLOAT;
PARTITION_ BASE LENGTH : FLOAT;
X : FLOAT;
oegin
END_CORRECTION := (DF(UPPER_BOUND)

- DF(LOWER_BOUND) )

8l




r‘ ...... BRI Sietai She A i Thhe AN At BPR s S B W0 A A Bt ok Sin Al oh e - s B e s 2l a-a ana s o o LS

rrrrrrr

/ 12.0;

END_SUM = F(UPPER_BOUND)
+ F (LOWER_BOUND) ;

while ABS (AREA - PREVIOUS_AREA) > ABS(TOLERANCE *
AREA) loop
PREVIOUS_AREA :
PREV_ NUMBER OF_PARTITIONS :
NUMBER OF _ PARTITIONS :

AREA;
NUMBER OF PARTITIONS;
NUMBER_OF_PARTITIONS
*2.
(UPPER_BOUND
- LOWER_BOUND)
/ FLOAT
(NUMBER_OF_PARTITIONS) ;

PARTITION BASE_LENGTH :

for ITERATION in l..PREV NUMBER_OF_PARTITIONS loop
X := LOWER _ BOUND
+ PARTITION_BASE_LENGTH
* PLOAT(2 * ITERATION - 1);
MID SUM := MID_SUM + F(X);
end loop;

AREA := (END_SUM + 2.0 * MID_SUM)
* PARTITION _BASE__ LENGTH * 9.5
- PARTITION BADE LENGTH
* PARTITION BASE LENGTH
* END_CORRECTION;

NEW_LINE;

PUT (NUMBER _OF_PARTITIONS) ;

PUT (AREA);

end loop;
end TRAPEZOIDAL_INTEGRATION;

- —— - — o —————— " — — —— D — = ——— —— — - — - ———— —— ——

S D D o WD - . D - - — D — T ——— - - —— — D - — . - . . — - D . - —— —— —— -

function F (X : in FLOAT) return FLOAT is
FUNCTIONAL~VALUE : FLOAT;

begin
FUNCTIONAL_ VALUE := 1.0 / X;
return FUNCTIONAL_VALUE;

end F;

- - - — . — L = — — - — — - — L —D " —p — D - D - - — - . D - — = —— - mmm

function DF (X : in FLOAT) return FLOAT is
FUNCTIONAL_VALUE : FLOAT;

begin
FUNCTIONAL_VALUB t= =1.0 / (X * X);
return FUNCTIONAL VALUE;

end DF:

end NUMERIC_INTEGRATION;

82




......

RO AR Al Anh Al Sodh S AS A -iaSe S0 one ee med o'm it Man aad oas \age o |

APPENDIX G

B 4n A s gue oo

SOURCE LISTING
TRAPEZOIDAL INTEGRATION MAIN PROGRAM
ADA REDESIGN USING SIX DIGIT PRECISION
VADS COMPILER RELEASE V04.06

with NUMERIC_INTEGRATION; use NUMERIC_INTEGRATION;
with TEXT_IO; use TEXT_I0O;
procedure MAIN 1is

gackage INT_IO is new INTEGER IO (INTEGER);
package REAL_IO is new FLOAT_IO (DIGITS_6) ;
use INT_IO;

use REAL_IO;

UPPER_BOUND : DIGITS_G t= 9.8;
LOWER_BOUND : DIGITS_6 := 1.9;
TOLERANCE : DIGITS_G := 1.0e-5;
AREA : DIGITS_6;
begin
NEW_LINE;
PUT ("TRAPEZOIDAL INTEGRATION");
NEW_LINE;
AREA := (F(UPPER_BOUND)
+ F(LOWER_BOUND))
* (UPPER_BOUND - LOWER_BOUND)
/  2.0;
PUT (1);
PUT (AREA);
TRAPEZOIDAL INTEGRATION (UPPER_BOUND,
LOWER_BOUND,
TOLERANCE,
AREA) ;

NEW_LINE;
PUT ("AREA = ");
PUT (AREA);
NEW_LINE;

end MAIN;

33




RO-A161 745 AN RSSESSIEIT OF ADA’S SUITABILITY IN GENERAL PURPOSE
PROGRAMMING APPLICATIONSCU> RIR FDRCE IIST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF SYST

UNCLASSIFIED L D CAVITT ET AL. SEP 83 F/G 9/2

S

I -

\

#




.

w
"

L Bl Bl T AR I S B e Bl At et g

A A o A G e A G S A )

m

s s

= 22

|

S o of

= =
"" Tl =
&

»

%
ez

2

MICROCOPY RESOLUTION TEST CHART
NAT'ONAL BUREAU OF STANDARDS - 1963 - 2

et

c ) ,.—‘,o




with TEXT_IO; use TEXT_IO;

e

type DIGITS_6 is digits

package INT_ IO
package REAL_IO
use INT_IO;

use REAL_IO;

APPENDIX H

package NUMERIC_INTEGRATION is

6;

SOURCE LISTING

TRAPEZOIDAL INTEGRATION ROUTINES PACKAGE

ADA REDESIGN USING SIX DIGIT PRECISION
VADS COMPILER RELEASE V24.46

is new INTEGER_IO (INTEGER) ;
is new FLOAT_IO

(DIGITS_6) ;

procedure TRAPEZOIDAL_ INTEGRATION
(UPPER_BOUND : in DIGITS_6;
LOWER_BOUND : in DIGITS_6;
TOLERANCE : in DIGITS_6;
AREA : in out DIGITS_6);
function F (X : in DIGITS_6) return DIGITS_6;
function DF (X : in DIGITS_6) return DIGITS_6;
end NUMERIC INTEGRATION;
package body NUMERIC_INTEGRATION is
[ procedure TRAPEZOIDAL_INTEGRATION
: (UPPER_BOUND : in DIGITS_6;
: LOWER_BOUND : in DIGITS_6;
i TOLERANCE : in DIGITS_6;
. AREA : in out DIGITS_6)
j NUMBER_OF _PARTITIONS : INTEGER s= 1;
A PREV_NUMBER_OF_PARTITIONS : INTEGER;
f PREVIOUS_AREA : DIGITS_6 := 8.9;
b MID_SUM : DIGITS 6 := 2.8;
i END_SUM : DIGITS_6;
: END_CORRECTION : DIGITS_6;
; PARTITION BASE_LENGTH : DIGITS_6;
» X : DIGITS_6;
begin

END_CORRECTION :=

34

(DF (UPPER_BOUND)

is

T W Y W W T W e W s w W f_'T.T'.'_."_rW

|




AR S e S A A N AN 2 St 02l aedh ook ool s sem o o oe~ogn Dot s 7

- DF(LOWER_BOUND) )
/ 12.0;
END_SUM :=  F(UPPER_BOUND)
+ F(LOWER_BOUND) ;

while ABS (AREA - PREVIQUS_AREA) > ABS(TOLERANCE *
AREA) loop

PREVIOUS AREA = AREA;

PREV_NUMBER_OF PARTITIONS := NUMBER_OF_PARTITIONS;

NUMBER_OF_ PARTITIONS := NUMBER_OF_PARTITIONS
* 2,

PARTITION BASE LENGTH := (UPPER BOUND

- LOWER_BOUND)
/ DIGITS 6
(NUMBER_OF_PARTITIONS) ;

for ITERATION in 1..PREV_NUMBER_OF_PARTITIONS loop
X := LOWER_BOUND
+ PARTITION _BASE_LENGTH

* DIGITS_6(2 * ITERATION - 1);
MID_SUM := MID_SUM + F(X);

end loop;

AREA := (END_SUM + 2.0 * MID_SUM)
* PARTITION _BASE_ LENGTH * 9.5
~ PARTITION BASE LENGTH
*

PARTITION~BASE_LENGTH
* END_CORRECTION;
NEW_LINE;
PUT (NUMBER_OF_PARTITIONS) ;
PUT (AREA);
end loop;
end TRAPEZOIDAL INTEGRATION;

D D D D - ———— - - D D D . - - — — - — - —— — ——— VD D e — - — - —y

D — e D D D - = W D D WD D A - —— -\ D — —— — —— - —— - —— — — —— -

function F (X : in DIGITS _0) return DIGITS_6 is
FUNCTIONAL_VALUE : DIGITS _6;

begin
FUNCTIONAL VALUE := 1.4 / X;
return FUNCTIONAL _VALUE;

end F;

D - R D D D D D — - . —— N - —— ————— —— —— D D W ey S S Em D = =P WP wm = -

- D D s - D - —— - - ——— — T = ———— - - D D =y W = = D w— - = == =D = =

function DF (X : in DIGITS _6) return DIGITS_6 is
FUNCTIONAL_VALUE : DIGITS 6

begin
FUNCTIONAL VALUE := -1.0 / (X * X);
return FUNCTIONAL VALUE;

end DF;

er.d NUMERIC_INTEGRATION;

85

..............................................

E .............................
. ) ~
i‘«—‘u-“—ﬂ“-h—'—n—d-—-‘.:— P - - "

............




a0

aOOO00n O Q

anooan

QOO

LT PCRONE A

APPENDIX I

SOURCE LISTING
TRUCK SIMULATION PROGRAM
FORTRAN 4 VERSION WITH 3544 ELEMENT ARRAY

TRUCK PROBLEM-VARIANT OF PP 77-32 IN BANKS AND CARSON.
PROGRAM TRUCK

REAL MIAT,MSVT

INTEGER NR

COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHKouT(199) ,B,MQ,S,F,ND,IIR,R(3500) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
I1=1

DSEED=567.9

NUMEVS=2

MIAT= 1.3/3.9

MSVT=.25

NCUST=1539

WE WILL USE GGUBS TO GENERATE A STRING OF RANDOM #'S
ROUTLNE GGJ3S

NR=3534

CALL GGUBS(NR)

IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
IIR=1

CALL INITIALIZATION ROUTINE

CALL INITLZ

CALL TIME-ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
AND ADVANCE

CLOCK TO THE IMMINENT EVENT TIME.

CALL TIMADV

VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.
I[MEVT=1 FOR AN ARRIVAL.

IMEVT=2 FOR A DEPARTURE.

GO TO(40,58) ,IMEVT

CALL ARRVL

GO TO 34

CALL DEPARTURE ROUTINE

CALL DPART

CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURLN TO
$ 39

IF(ND.LT.NCUST) GO TO 30

IF(II.EQ.1l) DSEED=567.0

IF(I1I.EQ.2) DSEED=459.48

86

A W I i nan Janm i B aban Jaadh Aaad e aess . v P ——

.........................................




ERa R A i do it d Al atul ot o

P

IF(II.EQ.3)
IF(I1.EQ.4)
IF(II.EQ.5)
IF(II.EQ.6)
IF(II.EQ.7)
IF(II.EQ.8)
IF(II.EQ.9)

.........

DSEED=561.0
DSEED=663 .0
DSEED=613.0
DSEED=867.0
DSEED=969.0
DSEED=1071.0
DSEED=1173.0

we B St S Sans g Sao, A f

PP PP

IF(I1.EQ.1d) DSEED=2717.9
CALL RPTGEN
WHEN SIMULATION OVER GENERATE REPORTS.

II=II+1

IF(II.EQ.2)
IF(II.EQ.3)
IF(II.EQ.4)
IF(II.EQ.3)
IF(II.EQ.6)
IF(II.EQ.7)

DSEED=459.9
DSEED=561.4
DSEED=663.9
DSEED=613.90
DSEED=867.0
DSEED=969.4

IF(II.EQ.8) DSEED=1071.9

IF(II1.EQ.9) DSEED=1173.4

IF(II.EQ.19) DSEED=2717.9

IF(II.LE.1d) GO TO 1

STOP

END

C INITIALIZATION ROUTINE
SUBROUTINE INITLZ
REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
lcdkour(led) ,B,MQ,Ss,F,ND,IIR,R(3594) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

53

SET SIMULATION CLOCK TO ZERO.

ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
INITIALIZE CUMULATIVE STATISTICS TO 4.
CLOCK=0.8

IMEVT=0

LQT=8

LST=4¢

TLE=0

B=90

MQ=0

S=0

F=0

ND=0

GENERATE TIME OF FIRST ARRIVAL,IAT, AND SCHEDULE FIRST
ARRIVAL

IN FEL(1)K.SET FEL(2) TO "INFINITY"™ TO INDICATE THAT A
DEPARTURE

IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY.
RR=R(IIR)

= -10g(RR)

X=X*MIAT

XXT=1.4

oXoNoXe

OoOnNO0O0n

87

..................................
..............
........

...........................
..................

............
PR W Ry

..............
..................




L e W W W W W W T W P o T T

FEL(1)=CLOCK + X
FEL(2)= 1.0E+38
IIR=IIR+1

RETURN

END

TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON FJTURE EVENT
LIST AND ADVANCES THE CLOCK.

SUBROUTINE TIMADV

REAL MIAT,MSVT

; COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,

i 1CHKouT(1040) ,8,MQ,S,F,ND,IIR,R(3534) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

i FMIN=1.E+29

aOO0nOn

IMEVT=2
C SEARCH FUTURE EVENT LIST FOR NEXT EVENT.
DO 38 I=1,NUMEVS
g IF(FEL(I) .GE.FMIN) GO TO 30
FMIN=FEL (I)
_ IMEVT=1
- 30 CONTINUE
; IF (IMEVT.GT.8) GO TO 58
C ERROR CONDITION: FUTURE EVENT LIST EMPTY.
WRITE (26 ,40)
40 FORMAT(1X,51HFUTURE EVENT LIST EMPTY-SIMULATION CANNOT
LCONTINUE.)
CALL RPTGEN
STOP
o ADVANCE SUMULATION CLOCK.
C NEXT EVENT IS TYPE "IMEVT",WHICH WILL OCCUR AT TIME
1FEL (IMEVT)

58 CLOCK=FEL(IMEVT)
RETURN
END

C ARRIVAL EVENT ROUTINE

SUBROUTINE ARRVL
REAL MIAT,MSVT,IAT
COMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CH4KOUT(190) ,B,M2,LS,F,ND,IIR,R(3508) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

DETERMINE IF SERVER IS BUSY (IS TRUCK BEING CURRENTLY
UNLOADED?)
IF(LST.EQ.1) GO TO 20

SERVER IS IDLE. UPDAATE SYSTEM STATE AND RECORD
ARRIVAL TIME OF

NEW CUSTOMER.

LST=1

CHKOUT (1)=CLOCK

C GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND

OO0 000

338




(oNoNoNe! OO0 00n

OnO0nnon

o XeNeXe]

20

199

200
285

SCHEDULE THE

DEPARTURE FOR THIS ARRIVAL.
RR=R(IIR)

X=-LOG (RR)

X=X*MSVT

FEL(2)=CLOCK+X

TLE=CLOCK

IIR=IIR+]

IF(LQT.GT.MQ) MQ=LQT

GO TO 109

SERVER IS BUSY. UP DATE SYSTEM STATE AND RECORD
ARRIVAL TIME
OF NEW CUSTOMER.

LQT=LQT+1

I=LQT +LST
IF(I.GT.1808) GO TO 209
CHKOUT (I)=CLOCK

UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S,ND AND
F ARE NOT

UPDATED WHEN AN ARRIVAL OCCURS.

B=8+ (CLOCK-TLE)

TLE=CLOCK

IF(LQT.GT.MQ) MQ=LQT

GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
ARRIVAL

EVENT

RR=R(IIR)

X=-LOG (RR)

IAT=X*MIAT

XXT=XXT+1.90

FEL(1)=CLOCK +IAT

IIR=1IIR+1

RETURN

ERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS
OVERFLOWED.

INCREASE DIMENSION OF VARIABLE CHKOUT(I).
WRITE(06,205)

FORMAT (1X ,45HOVERFLOW IN ARRAY CHKOUT. INCREASE
1DIMENSION.,//1X,27HSIMULATION CANNON CONTINUE.)
CALL RPTGEN

STOP

END

DEPARTURE EVENT ROUTINE.

SUBROUTINE DPART

REAL MIAT,MSVT

COMMON/SIM/ MIAT,MS/T,NCUST,LQT,LST,TLE,

89

GRS S Ve ¥ )

Py

CROBLIRATTY LTy we W ey T

'y

o




1CHKROUT(104) ,8,MQ,S,F,ND,IIR,R(3508) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

C
c UPDATE CUMULATIVE STATISTICS:B,S,ND,F. NOTE:LQT IS
C DECREASING
c 30 MQ DOES NOT CHANGE NOW.
B=8+ (CLOCK~TLE)
TLE=CLOCK
RT=CLOCK-CHKOQUT(1)
ﬁ 5=3+RT
ND=ND+1
[ IF(RT.GT.4.0) F=F+1
(™
c CHECK CONDITION OF WAITING LINE.
_ IF(LQT.GE.1l) GO TO 28
C
g: C NO CUSTOMES IN LINE. SERVER 3ECOMES IDLE. NEXT
[ C DEPARTURE TIME
C SET TO "INFINITY".

LST=4
FEL(2)=1.E+30
RETURN
AT LEAST ONE CUSTOMES IN LINE, SO MOVE EACH CUSTOMER
IN LINE
FORWARD ONE SPACE.
28 DO 30 I=1,LQT

ii Il=1I+1
b
§

aOnon

CHKOUT(I)=CHKOUT(I1l)
39 CONTINUE
UPDATE SYSTEM STATE
LQr=L2T-1
GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
) SERVICE,
AND SCHEDULE NEXT DEPARTURE EVENT.
RR=R(IIR)

@]

e ()

X=-LOG (RR)
SVD=X*MSVT
FEL(2)=CLOCK +S3VT
- IIR=IIR+1
RETURN
END
o REPORT GENERATOR
SUBROUTINE JRPTGEN
REAL MIAT,MSVT
COMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHKOUT(129) ,8,MQ,S,F,ND,IIR,R(3503) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
C COMPUTE SUMMARY STATISTICS
RHO=B/CLOCK
AVGR=S/ND
PC4=F/ND
XX1=S/CLOCK

90




YT YT TR T ,"' ﬁ Lol DAt iC R A e et Sk i Y CRF el Wl A A Al A A S A i A o fa ANt AL AAh ahe SAd ate s wi ,-v-ﬁ.v-.#

XX2=XXT/CLOCK
WRITE(96,10)
12 FORMAT(5X,63HTRUCK QUEUING PROSLEM:ANDERSON AND
1SWEENEY-SINGLE SERVER QUEUE.,///)
WRITE(96,15) DSEED,MIAT,MSVT
15 FORMAT(1X,7HDSEED =,4X,D20.8/1X,25HMEAN ARRIVAL
1TIME (MIAT) =,4X,F10.4/1X,25HMEAN SERVICE TIME (MSVT)
2=,4%X,F10.4//)
WRITE(Q6,30) RHO,MQ,AVGR,PC4,CLOCK,ND,IIR,XX1,5,XX2
33 FORMAT(1X,38dPROPORTION OF TIME DOCK CREW IS BUSY
1=,F8.2,//1X,32HMAXIMUM LENGTH OF WAITING LINE
2=,18,//1X,28BAVERAGE TIME TO TRANSIT SYS.,F3.2,19H
3HOURS..//1X,62HPROPORTION OF TRUCKS TAKING FOUR OR
4MORE HOURS.. IN THE SYSTEM,F6.2//1X,21HSIMULATION RUN
5LENGTH,F8.2,13H HOURS..//1X,274NUMBER OF TRUCKS
6UNLOADED =,I1I8//1X,31HNUMBER OF RANDOM NUMBERS USED
7=,1190,//1X,32HAVERAGE NUMBER OF UNITS IN
3SYS.=,3X,F8.3//1X,45HTOTAL NUMBER OF TRUCK HOURS IN
9THE SYSTEM(S)=
9,F11.3,4X,158(TRUCKS PER HR)//1X,34HAVERAGE NUMBER OF
9ARRIVALS PER HR=,4X,F13.4////)
RETURN
END
C RANDOM NUMBER GENERATOR
SUBROUTINE GGUBS (NR)
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1cdgour(194) ,8,MQ,S,F,ND,IIR,R(3599) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
REAL tmpreal, temp
INTEGER tmpint
DO 48 I=1,NR
tmpreal=DSEED*3.141592
tmpint=int(tmpreal)
temp=tmpreal-real(tmpint)
if (temp .GE. 0.5) then
tmpint = tmpint + 1

tmpreal = tmpreal - real(tmpint)
else

tmpreal = temp
endif

if (tmpreal .LT. 0.8) then
tmpreal=-tmpreal
endif
tmpreal = 2.000*tmpreal
R(I)=tmpraal
DSEED=tmpreal
49 CONTINUE
RETURN
END

91




Sy R R R RO WOV RO W - - —
T T R Rl Rl AT e T TR TS - v ey . ol et sl e Tvr—*r-_fr'r'r_'—:vTv'_‘v'.v.'v;T

APPENDIX J

SOURCE LISTING
TRUCK SIMULATION PROGRAM
FORTRAN 4 VERSION USING 6593 ELEMENT ARRAY

¢ C TRUCK PROBLEM-VARIANT OF PP 77-82 IN BANKS AND CARSON.
q PROGRAM TRUCK
REAL MIAT,MSVT
INTEGER NR
i; COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHKOUT(124) ,B,MQ,S,F,ND,IIR,R(6508) ,DSEED
{ COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
II=1
DSEED=567.0
' 1 NUMEVS=2
t MIAT= 1.8/3.0
O MSVT=.25
[ NCUST=3009

c WE WILL USE GGUBS TO GENERATE A STRING OF RANDOM #'S
3 C ROUTINE GGUBS
3 NR=35290
CALL GGUBS (NR)
‘i c IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
IIR=1
c CALL INITIALIZATION ROUTINE
CALL INITLZ
c
c
!i C CALL TIME-ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
§ c AND ADVANCE
» c CLOCK TO THE IMMINENT EVENT TIME.

38 CALL TIMADV

VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.
IMEVT=1 FOR AN ARRIVAL.
IMEVT=2 FOR A DEPARTURE.
GO TO(49,59) ,IMEVT
49 CALL ARRVL
GO TO 39

aOO0On0n

‘ C CALL DEPARTURE ROUTINE
59 CALL DPART
: c
i C CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURLN TO
g c + 30
.

3 IF(ND.LT.NCUST) GO TO 34
IF(II.EQ.1l) DSEED=567.0
IF(II.EQ.2) DSEED=459.49

92




aO0O0O0n

QOGO 0

53

.........

IF(II.EQ.3)
IF(I1.EQ.4)
IF(II.EQ.5)
IF(II.EQ.6)
IF(I1T.EQ.7)

DSEED=561.32
DSEED=663.49
DSEED=613.0
DSEED=367.0
DSEED=969 .49

CA Y £ S A - Wy

PAL AR Gl - et g m o e o <0 s

LT —rme

DSEED=1471.0
DSEED=1173.9
DSEED=2717.0

IF(II.EQ.8)
IF(II.EQ.9)
IF(IT.EQ.19)
CALL RPTGEN
WHEN SIMULATION OVER GENERATE REPORTS.
II=IT+1

IF(II.EQ.2)
IF(II.EQ.3)
IF(II.EQ.4)
IF(II.EQ.5)
IF(II.EQ.6)
IF(II.EQ.7)

DSEED=459.0
DSEED=561.0
DSEED=663.3
DSEED=613.40
DSEED=867.0
DSEED=969.9

DSEED=1871.9
DSEED=1173.0
DSEED=2717.0

IF(II.EQ.8)
IF(II.EQ.9)
IF(II.EQ.19d)

IF(II.LE.14d) GO TO 1

STOP
END

INITIALIZATION ROUTINE
SUBROUTINE INITLZ

REAL MIAT,MSVT

COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CcHKoUT(1909) ,B,MQ,S,F,ND,IIR,R(3509) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

SET SIMULATION CLOCK TO ZERO.
ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
INITIALIZE CUMULATIVE STATISTICS TO @.

CLOCK=0.0
IMEVT=0
LQT=9
LST=0
TLE=0

B=9

MQ=1D

S=d

F=9

ND=0

GENERATE TIME OF FIRST ARRIVAL,IAT,

ARRIVAL

AND SCHEDULE FIRST

IN FEL(1)K.SET FEL(2) TO "INFINITY" TO INDICATE THAT A

DEPARTURE

IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY.

RR=R(IIR)
X= -10g(RR)
X=X*MIAT
XXT=1.0

93

e ien




BTl Wi el A Sl B S S A S S St 0l Sl RO Attt e aae o gn Mt ke g " e~y

FEL(1)=CLOCK + X
FEL(2)= 1.0E+30
IIR=IIR+]

RETURN

END

TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON FUTURE EVENT
5 LIST AND ADVANCES THE CLOCK.

_ SUBROUTINE TIMADV

<

)

OO0

REAL MIAT,MSVT
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CdKouT(199) ,B,M2,S,F,ND,IIR,R(3500) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
FMIN=1.E+29
IMEVT=0
SEARCH FUTURE EVENT LIST FOR NEXT EVENT.
DO 30 I=1,NUMEVS
IF(FEL(I) .GE.FMIN) GO TO 349
FMIN=FEL(I)
IMEVT=1
39 CONTINUE
IF (IMEVT.GT.08) GO TO 54
c ERROR CONDITION: FUTURE EVENT LIST EMPTY.
WRITE(06,43)
42 FORMAT(1X,31HFUTURE EVENT LIST EMPTY-SIMULATION CANNOT
1CONTINUE.)
CALL RPTGEN
STOP
ADVANCE SUMULATION CLOCK.
NEXT EVENT IS TYPE "IMEVT",WHICH WILL OCCUR AT TIME
1FEL(IMEVT)

45 ,wvﬁ.,v"rn,. v

[N Q]

(@]

- EESOOSee: ~ Shanaa

59 CLOCK=FEL(IMEVT)
RETURN

[ END

; ARRIVAL EVENT ROUTINE

SUBROUTINE ARRVL

REAL MIAT,MSVT,IAT

COMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
1CHKOUT(109) ,8,MQ,LS,F,ND,IIR,R(3580) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

(@]

DETERMINE IF SERVER IS BUSY (IS TRUCK BEING CURRENTLY
UNLOADED?)
IF(LST.EQ.1l) GO TO 24

MG assassar

SERVER IS IDLE. UPDAATE SYSTEM STATE AND RECORD
ARRIVAL TIME OF

: NEW CUSTOMER.

- LST=1

CHKOUT (1)=CLOCK

GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND

XN KR) ONeNe!

O

94

AT N




~——————r———

Tk wW Wy

[N @]

aOOO0nOon

(Y)Y 2 O

QO

OO OO

[ON®]

29

129

2949

T e T r———

SCHEDULE THE
DEPARTURE FOR THIS ARRIVAL.

RR=R(IIR)
=-LOG (RR)
X=X*MSVT

FEL(2)=CLOCK+X
TLE=CLOCK

IIR=IIR+1
IF(LQIr.GT.MQ) MQ=LQT
GO TO 149

SERVER IS BUSY. UP DATE SYSTEM STATE AND RECORD
ARRIVAL TIME
OF NEW CUSTOMER.

LRT=LQT+1

I=LQT +LS3T
IF(I.GT.104) GO TO 204
CHKOUTI(I)=CLOCK

UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S,ND AND
F ARE NOT .

UPDATED WHEN AN ARRIVAL OCCURS.

8=8+ (CLOCK-TLE)

TLE=CLOCK

IF(LAT.GT.MQ) MQ=LQT

SENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
ARRIVAL

EVENT

RR=R(IIR)

X=-LOG(RR)

IAT=X*MIAT

XXT=XXT+1.9

FEL(1)=CLOCK +IAT

IIR=IIR+]

RETURN

ERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS
OVERFLOWED.

INCREASE DIMENSION OF VARIABLE CHKOUT(I).
ARITE (46 ,285)

235 FORMAT(1X,45HOVERFLOW IN ARRAY CHKOUT. INCREASE

IDIMENSION.,//1X,27HSIMULATION CANNON CONTINUE.)
CALL RPTGEN

STOP

END

DEPARTURE EVENT ROUTINE.

SUBROUTINE DPART

REAL MIAT,MSVT

COMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,

95

£ x a_a o




lcHkouT(190) ,B,MQ,S,F,ND,IIR,R(3508) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT

UPDATE CUMULATIVE STATISTICS:8,S,ND,F. NOTE:LQT IS
DECREASING

SO MQ DOES NOT CHANGE NOW.

B=B+ (CLOCK-TLZ)

TLE=CLOCK

RT=CLOCK~CHKQOUT(1)

S=5+RT

ND=ND+1

IF(RT.GT.4.0) F=F+1

o XoNeKe

CHECK CONDITION OF WAITING LINE.
IF(LQT.GE.1) GO TO 28

NO CUSTOMES IN LINE. SERVER BECOMES IDLE. NEXT
DEPARTURE TIME
SET TO "INFINITY".
LST=4d
FEL(2)=1.E+30
RETURN
AT LEAST ONE CUSTOMES IN LINE, 50 MOVE EACH CUSTOMER
IN LINE
FORWARD ONE SPACE.
20 DO 39 1=1,LQT
I1=I+1
CHKOUT(I)=CHKOUT(I1)
30 CONTINUE
UPDATE SYSTEM STATE
LQT=LQT-1
GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
SERVICE,
AND SCHEDULE NEXT DEPARTURE EVENT.
RR=R(IIR)
==LOG (RR)
SVT=X*MSVT
FEL(2)=CLOCK +SVT
IIR=IIR+1
RETURN
END
C REPORT GENERATOR
SUBROUTINE RPTGEN
REAL MIAT,MSVT
CCMMON/SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
icaKkour(1ie9) ,8,MQ,S,F,ND,IIR,R(3589) ,DSEED
COMMON/TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
C COMPUTE SUMMARY STATISTICS
RHO=8/CLOCK
AVGR=S/ND
PC4=F/ND
XX1=5/CLOCK

QOO0 00

OoO0O0n

OO0 (@]

VF'Y.".’-" -

96

................




XX2=XXT/CLOCK
WRITE (36 ,19)
19 FORMAT (5X,63HTRUCK QUEUING PROBLEM:ANDERSON AND
1SWEENEY-SINGLE SERVER QUEUE.,///)
WRITE(Y6,15) DSEED,MIAT,MSVT
15 FORMAT(1X,7HDSEED =,4X,D20.8/1X,254MEAN ARRIVAL
1TIME (MIAT) =,4X,F10.4/1X,25HMEAN SERVICE TIME (MSVT)
2=,4X,F18.4//)
WRITE(06,30) RHO,MQ,AVGR,PC4,CLOCK,ND,IIR,XX1,S,XX2
. 380 FORMAT(1X,33HPROPORTION OF TIME DOCK CREW IS BUSY
1=,F8.2,//1X,32HMAXIMUM LENGTH OF WAITING LINE
2=,18,//1X,28HAVERAGE TIME TO TRANSIT SYS.,F8.2,10H
3HOURS..//1X,62HPROPORTION OF TRUCKS TAKING FOUR OR
4MORE HOURS.. IN THE SYSTEM,F6.2//1X,21HSIMULATION RUN i
SLENGTH,F8.2,10H HOURS..//1X,27HNUMBER OF TRUCKS ]
6UNLOADED =,18//1X,31HNUMBER OF RANDOM NUMBERS USED I
7=,1190,//1X,32HAVERAGE NUMBER OF UNITS IN
385Y¥S.=,3X,F8.3//1X,45HTOTAL NUMBER OF TRUCK HOURS IN
9THE SYSTEM(S)=
9,F11.3,4X,15H(TRUCKS PER HR) //1X ,34HAVERAGE NUMBER OF
9ARRIVALS PER HR=,4X,Fl0.4////)
RETURN
END
RANDOM NUMBER GENERATOR
SUBROUTINE GGUBS (NR)
COMMON /SIM/ MIAT,MSVT,NCUST,LQT,LST,TLE,
lcakour(1e9) ,8,M2,S,F,ND,IIR,R(3538) ,DSEED
COMMON /TIMEKP/ CLOCK,IMEVT,NUMEVS,FEL(2) ,XXT
REAL tmpreal, temp
INTEGER tmpint
DO 40 I=1,NR
tmpreal=DSEED*3.,141592
tmpint=int(tmpreal)
tenp=tmpreal-real(tmpint)
if (temp .GE. 8.5) then
tmpint = tmpint + 1 .
tmpreal = tmpreal - real(tmpint) 1

(@}

else
tmpreal = temp
endif
if (tmpreal .LT. @.4) then 1
tmpreal=-tmpreal
endif
tmpreal = 2,008*tmpreal .
R(I)=tmpreal k
DSEED=tmpreal ‘
48 CONTINUE .
RETURN j
END

97

................
.....................

- - -. ST e ’ ° Lt o - L - <O < -. !. .. e -
WA PO S Rt 3 L R S T PRI T . . . D A R R I SR S
u:.: MV ILE I W SPR LAA S 2 G I T A s et ' e nnainatotabealieol il b “‘.ﬁ:—' ” '\l‘ PR IFIONES ..A_"Aj.‘.L.‘-..'Lll._-..- a’s =t




APPENDIX K

SOURCE LISTING
TRUCK SIMULATION PROGRAM
ADA LINE-BY-LINE TRANSLATION WITH 3508 ELEMENT ARRAY
TELESOFT-ADA COMPILER VERSION 1.5

- A P = = — - D = D D —— I P D P D . . - - — — D D - - - —— - —— o -

= — D . Y - W - . —— D D - - D D - - - g - — - =

THIS PROGRAM IS THE SINGLE SERVER QUEUE SIMULATION
PROGRAM WRITTEN IN FORTRAN. TITLE OF THE PROGRAM IS
TRUCK. THIS PROGRAM IS A LINE BY LINE TRANSLATION OF THE
FORTRAN PROGRAM INTO ADA.

- - - " - — - — - —— - - - - —— - —— — - - - — S — T I - - - = ==

with text_io; use text_io;
use float_io; use integer_io;
with log; use log;

procedure TRUCK is

NR : integer;

DSEED : float := 567.0;

type RN is array(integer range 1 .. 3584) of float;
type FUTURE_EVENT is array (1 .. 2) of float;

type ARRIVE is array (1 108) of float;

MIAT : float := 1.8/3.0;
MSVT : float := 0.25;
CLOCK,TLE,B,3 : float;
NUMEVS : integer :=2;

II : integer := 1;
LQT,LST,MQ,F : integer;
ND,IIR,IMEVT : integer;
XXT : float:;

CHKOUT : ARRIVE;

R : RN;

FEL : FUTURE_EVENT;
NCUST : integer := 1508;

. D o - T R - —— - —— - - - — - D D WS D D D Y D - - - - D S D WD VD WS VD = W > Y~ ——— > -

procedure RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED

-=COMPUTE SUMMARY
RHO, AVGR:
XX1, XX2:

ND,F,IIR,MQ :
STATISTICS.,

float;
float;

98

in out integer)

: in out
float;
is




>

PP Py

- A L e——— T ——e——w B S St 20l S By J0eh T an At A g Bk Ao aa &

PC4: float;

begin

RHO := B/CLOCK;

AVGR := S/float(ND);

PC4 := float(F)/float(ND):;

XX1 := S/CLOCK;

XX2 := XXT/CLOCK;

put (" TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-
SINGLE SERVER QUEUE");

new_line; new_line; new_line ;

put (" DSEED= "); put(DSEED); new_line;

’
put (" MEAN ARRIVAL TIME(MIAT) = "); put (MIAT);
new_line;
put (" MEAN SERVICE TIME(MSVT)
new_line;
new_line;
put (" PROPORTION OF TIME DOCK CREW IS BUSY =");
put (RHO) ;
new_line; new_line;
put (" MAXIMUM LENGTH OF WAITING LINE ="); put(MQ);
new_line; new_line;
put (" AVERAGE TIME TO TRANSIT SYS."); put(AVGR):;
put ("HOURS.") ;
new_line; new_line;
put (" PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS..
IN THE SYSTEM"); put(PC4);
new_line; new_line;
put (" SIMULATION RUN LENGTH"); put(CLOCK) ;
put ("HOURS.") ;
new_line; new_line;
put (" NUMBER OF TRUCKS UNLOADED ="); put(ND);
new_line; new_line;
put (" NUMBER OF RANDOM NUMBERS USED ="); put(IIR);
new_line; new_line;
put (" AVERAGE NUMBER OF UNITS IN SYS.= ") put(XXl);
new_line; new_line;
put (" TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=");
put(S);
put (" (TRUCKS PER HR)");
new_line; new_line;
put (" AVERAGE NUMBER OF ARRIVALS PER HR= ")
put (XX2) ;
new_line; new_line; new_line; new_line;

[}

"); Put(MSVT);

end RPTGEN;

function GGUBS(DSEED: in float) return RN is
tmpint : integer;

99




O . S O A T A A S M A e e e i St B SR i it dhti St i S Tt ind- S de e -4 SRR A R R T

tmpreal : float;
SEED : float := DSEED;

begin

for I in R'range loop
tmpreal := SEED*3.141592;
tmpint := integer (tmpreal);
tmpreal := tmpreal - float(tmpint);

if tmpreal < 8.8 then
tmpreal := -tmpreal;
end if;

tmpreal := 2.00d*tmpreal;
= tmpreal;
= tmpreal;

return R;

end GGUBS;

- - — - ——— - ——  —— — ————— — —— - - — - - - —— - - — - - o

procedure INITLZ(CLOCK,TLE,B,S: in out float;
IMEVT,LQT,LST,MQ,F,ND: in out integer;
IIR : in out integer;
MIAT,XXT : in out float;
R : in out RN;
FEL : in out FUTURE_EVENT) is
--SET SIMULATION CLOCK TO ZERO.
-~-ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
~--INITIALIZE CTUMULATIVE STATISTICS TO 4.
RR: float;
X: float;
--GENERALTE TIME OF FIRST ARRIVAL, IAT, AND SCHEDULE FIRST
-=-ARRIVAL IN FEL(1)K.SET FEL(2) TO "INFINITY: TO INDICATE
--THAT A DEPARTURE IS NOT POSSIBLE WHILE THE SY3TEM IS EMPTY

begin
CLOCK := 0.0;
IMEVT := 8;
LT := B;
LST := 3;
TLE := 98.9;
B := 8.0;
M2 :=0;
S := 08.3;
F := @;
ND := 9;
RR := R(IIR):

100

- " B e e T T e e . e N *
LR S PR T S S S T T CERC I A
N I S S L SRR NS ST S

- - . - - . - :
YIS D S, TR R S S N S W R I SRR




B e amae o ae o

———

ng a4 "

—

M L on me o oe o

o e vy e .

ERMEANL A M A A AR M I A S A ae aroh e APEh At AV SAn S Al s S Aadl ealh Mol &

MIAT * X;
XXT := 1.48;
FEL ( := CLOCK + X;

1)
FEL(2) := 1.0e30;
t= IIR + 1;

end INITLZ;

e D - — . — - D — - Y - = D S G S AR Y D G P Y A D D - D — - — P ———— — - - -

orocedure TIMADV (IMEYT,NUMEVS,ND,F,IIR,MQ,II : in out
integer;
CLOCK,B,S,XXT,MIAT,MSVT,DSEED : in out
float;
FEL : in out FUTURE_EVENT) is
-~-TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON
-~FUTURE EVENT LIST AND ADVANCES THE CLOCK.
FMIN: float:= 1.0e29;
~~SEARCH FUTURE EVENT LIST FOR NEXT EVENT.

begin

IMEVT := 3;
1

for I in .. NUMEVS loop

if FEL(I) >= FMIN then null;

else
FMIN := FEL(I1);
IMEVT := I;
end if;
end loop;

if IMEVT > 34 then null;

elsa
-~-ERROR CONDITION : FUTURE EVENT LIST EMPTY.
II := 11;

PUT("™ FUTURE EVENT LIST EMPTY - SIMULATION CANNOT
CONTINUE.") ;
RPTGEN(B,CLOCK,S,XXT ,MIAT,MSVT,DSEED,ND,F,IIR,MQ);
end if;
--ADVANCE SIMULATION CLOCK
-=-NEXT EVENT IS TYPE "IMEVT", WHICH WILL OCCUR
--AT TIME FEL(IMEVT).
CLOCK := FEL(IMEVT);

end TIMADV;

181




Pt A i ies as g |

X procedure ARRVL(LST,LQT,MQ,IIR,ND,F,II : in out integer;

r CLOCK,B,TLE,MSVT, XXT,MIAT,S,DSEED : in out
i float;
% CHKOUT : in out ARRIVE;

: FEL : in out FUTURE_EVENT;
= R : in out RN) 1is
. --DETERMINE IF SERVER IS BUSY ( IS TRUCK BEING CURRENTLY
--UNLOADED) .
RR,X,IAT : float;
I : integer;

begin

if LST = 1 then
LQT := LQT +1;
I := LQT + LST;

if I > 104 then

-~-ERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS OVERFLOWED.
-—INCREASE DIMENSION OF VARIABLE CHKQUT(I).
II := 11;
PUT (" OVERFLOW IN ARRAY CHKOUT. INCREASE
DIMENSION.,");
NEW_LINE;
PUT("™ SIMULATION CANNOT CONTINUE.");
RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);

else

CHKOUT(I) := CLOCK;
--UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S, ND, AND F
--ARE NOT UPDATED WHEN AN ARRIVAL OCCURS.

B := B + (CLOCK - TLE);

TLE := CLOCK;

if LQT > MQ then
MQ := LQT;
end if;

--GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
--ARRIVAL EVENT.

RR := R(IIR);
X := ~-LN(RR);
IAT := MIAT * X;
XXT := XXT + 1.0;

FEL(1l) := CLOCK + IAT;
IIR := IIR +1;
end if;
else |

-=-SERVER IS IDLE. UPDATE SYSTEM STATE AND RECORD ARRIVAL T

182

PrrYTvYe o




R T O o=y

--TIME OF NEW CUSTOMER.
LST := 1;
CHKQUT (1) := CLOCK;
--GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND
--SCHEDULE THE OEPARTURE FOR THE ARRIVAL.
RR:= R(IIR);
-LN(RR) ;
MSVT * X;
FEL(2) := CLOCK + X;
TLE := CLOCK;
IIR := IIR + 1;

o >
W

if LQT > MQ then
MQ := LQT;
end if;

RR := R(IIR);

X := -LN(RR):;
IAT := MIAT * X;
XXT := XXT + 1.9;
FEL(l) := CLOCK + IAT;
IIR := IIR + 1;
end if;
end ARRVL;

. —— ——— — —— —— — —— — — - —_—  — —— = - - - N —— — — — - — - — — . — - - - —— - -

procedure DPART(B,CLOCK,TLE,S,MSVT : in out float;
ND,F,LQT,IIR,LST : in out integer;
CHKOUT : in out ARRIVE;
R : in out RN;
FEL : in out FUTURE_EVENT) is
~--UJUPDATE CUMULATIVE STATISTICS: B, S, ND, F.
~-NOTE: LQT IS DECREASING SO MQ DOES NOT CHANGE NOW.
RT,RR,X,SVT : float;
I1 : integer;

begin
B := B + (CLOCK - TLE);
TLE := CLOCK;
RT := CLOCK - CHKOUT(1l):;
S := S + RT;
ND := ND + 1;
if RT > 4.8 then
F := F + 1;
end if;

--CHECK CONDITION OF WAITING LINE.
if LQT >= 1 then

193

Y

At B P Pt " e A L e e e e lme RS v ¢




for I inl ..
I1 := 1 + 1
CHKOUT(I)
end loop;
~-UPDATE SYSTEM STATE.
LQT := LQT - 1;
~-GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
~-SERVICE, AND SCHEDULE NEXT DEPARTURE EVENT.
RR := R(IIR);
X := -LN(RR):;
SVT := MSVT * X;
FEL(2) := CLOCK + SVT;
IIR := IIR + 1;

else

~-NO CUSTOMERS IN LINE. SERVER BECOMES IDLE.
t --NEXT DEPARTURE TIME SET TO "INFINITY".

LST := 0;

FEL(2) := 1.0e30;

1 end if;

end DPART;

s - —————— — T — — T " ——— - —— - ————— — - —— - —— - —
- - D D —m W D = s —— S - D D - - — . — D . - W = D - — - - ——— - - - —
- - —— - N =D mmp Dy R N D D TS P T = P - - o Y . D > - —— — — - — — -

begin

\ while II <= 10 loop
--WE WILL USE ONE STRING OF UNIFORM RANDOM NUMBERS
| R := GGUBS (DSEED) ;
--IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
! IIR := 1;
- ~--CALL INITILIZATION ROUTINE
INITLZ (CLOCK,TLE,B,S, IMEVT,LQT,LST,MQ,F,ND,IIR,
- MIAT,XXT,R,FEL);
b --CALL TIME ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
* --AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.
4 while ND < NCUST loop

TIMADV (IMEVT ,NUMEVS ,ND,F,IIR,MQ,II,CLOCK,B,S,XXT,MIAT,
MSVT,DSEED,FEL) ;

--VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.

--IMEVT = 1 FOR AN ARRIVAL

-=-IMEVT = 2 FOR A DEPARTURE

if IMEVT = 1 then
ARRVL(LST,LQT,MQ,IIR,ND,F,I1I,CLOCK,B,TLE,MSVT,XXT,
MIAT,S,DSEED,CHKOUT,FEL,R) ;

T Y CYEEWr V¥V W v v~ v pagw———

| s

124

. e TEm Ty %

...............................

[V WS TOR A SU S . A A S S e R T P A P R PPN AT P

.......




S T T T R P gy

else
DPART (8,CLOCK,TLE,S,MSVT,ND,F,LQT,IIR,LST,CHKOUT,R,FEL) ;
end if;

end loop;
-—-CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURN IO

--TIMADV.
case 1II is

when 1 => DSEED := 567.9;
when 2 => DSEED := 459.3;
when 3 => DSEED := 561.9;
when 4 => DSEED := 663.3;
when 5 => DSEED := 613.0;
when 6 => DSEED := 867.3;
when 7 => DSEED := 969.0;
when 3 => DSEED := 1371.92;
when 9 => DSEED := 1173.0;
when 19 => DSEED := 2717.9;
when otners => null;

end case;

RPTGEN (B,CLOCK ,S,XXT ,MIAT,MSVT,DSEED,ND,F,IIR,MQ);
--WHEN SIMULATION OVER GENERATE REPORTS.

IT := II + 1;

case II is

when 2 => DSEED := 459.0;
when 3 => DSEED := 561.0;
when 4 => DSEED := 663.0;
when 5 => DSEED := 613.9;
when 6 => DSEED := 867.3;
when 7 => DSEED := 969.0;
when 8 => DSEED := 1071.3;
when 9 => DSEED := 1173.0;

when 18 => DSEED := 2717.8;
when others => null;

end case;

end loop;

end TRUCK;

135




Ty TR - (RPN S w At Al Boa i S -B dri St S A 2L ot AL AR afd ahd atn 2and

APPENDIX L

SOURCE LISTING
TRUCK SIMULATION PROGRAM
ADA LINE-BY-LINE TRANSLATION WITH 3509 ELEMENT ARRAY
VADS COMPILER RELEASE V04.06

@ — — - —— . P D W D D M W W - A —— " D - — — D P o o

. — —— - . — ——— - D = ——— - ———— —— - R D W W T S D . o —

s -~ THIS PROGRAM IS THE SINGLE SERVER QUEUE SIMULATION

b ~—- PROGRAM WRITTEN IN FORTRAN. TITLE OF THE PROGRAM IS

t -- TRUCK. THIS PROGRAM IS A LINE BY LINE TRANSLATION OF THE
1 ~- FORTRAN PROGRAM INTO ADA.

- D —n - D = D - - D D D G — VD D - D A . T D G T . D D P D Wy omn - —

——— D . — - — - — . —— . D P = S =P W - . = D N - - . D R D " " - o D D

with text_io; use text_io;
with log; use 103;

procedure trk is
package int_io is new integer_io(integer);

package real io is new float_ 1o(float);
use int_io; use real_io;

NR : integer;
& DSEED : float := 567.9;
- type RN is array(integer range 1 .. 3588) of float;
type FUTURE_EVENT is array (1 .. 2) of float;
# type ARRIVE is array (1 .. 108) of float;
MIAT : float := 1.08/3.2;
- MSVT : float := 8.25;
- CLOCK,TLE,B,S : float;
2 NUMEVS : irteger :=2;
# II : integer := 1;
® LQT,LST,MQ,F : integer;
! ND,IIR,IMEVT : integer;
X XXT : float;
- CHKOUT : ARRIVE;
R : RN;
FEL : FUTURE_EVENT;
NCUST : integer := 1530; -

procedure RPTGEN(B,CLOCK,S,XXT,MIAT,MSVT,DSEED : in out
float; ND F, IIR MQ : in out integer) 1is
--COMPUTE SUMMARY STATISTICS.

106

''''''''''''''''




R R R e AR R R W TN T W—r———
Bl B N Ny 13 ey YT I R e B

RHO, AVGR: float;
XX1, XX2: float;
PC4: float;

PO PI JILIE. WY S S

begin 4
RHO := B/CLOCK;
AVGR := S/float(ND);

PC4 := float(F)/float(ND); .
XXl := S/CLOCK; 3
XX2 := XXT/CLOCK; !
put (" TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-

SINGLE SERVER QUEUE");
new_line; new_line; new_line; ]

put (" DSEED= "); put(DSEED); new_line; _
put (" MEAN ARRIVAL TIME(MIAT) = ") ; put (MIAT); b
new line; ]

put("™ MEAN SERVICE TIME(MSVT) "): put(MSVT);
new_line;

new_line; )
put (" PROPORTION OF TIME DOCK CREW IS BUSY ="); 1
put (RHO) ; ]
new_line; new_line;

put (" MAXIMUM LENGTH OF WAITING LINE ="); put(MQ);

new_line; new_line;

put ("™ AVERAGE TIME TO TRANSIT SYS."); put(AVGR);

put ("HOURS.") ;

new_line; new_line; }
put (" PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS..

IN THE SYSTEM"); put(PC4); b
new_line; new_line; a
put (" SIMULATION RUN LENGTH"); put(CLOCK); p
put ("HOURS.") ; !
new_line; new_line; i
put (" NUMBER OF TRUCKS UNLOADED ="); put(ND);

new_line; new_line; '
put (" NUMBER OF RANDOM NUMBERS USED ="); put(IIR); 3
new_line; new_line; A
put (" AVERAGE NUMBER OF UNITS IN SYS.= "); put(XX1l);

new_line; new_line; 1
put (" TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)="); 1
put(S); ]
put (" (TRUCKS PER HR)"); :
new_line; new_line; ]
put (" AVERAGE NUMBER OF ARRIVALS PER HR= ") )
put (XX2); !
new_line; new_line; new_line; new_line;

end RPTGEN;

- —— - — —— ———— - —— " - ———— - —— — ——— — — —— —— ———

197 p

AT T TTITME ANUVAANCE RAMNTINE TN OAFTERMINRE TMMINENT RUYENT



Pt g At GI G aant Sv R Suah Sutie St ot SnmE aaheh- nOM S Il it Jdes SadEE adeh sha oSe: oot f‘—!

function GGUBS(DSEED: in float) return RN is
type sixdigit is digits 6;
tmpint : integer;
tmpreal, temp : sixdigit;
SEED : sixdigit;

begin
SEED := sixdigit (DSEED);
for I in R'range loop
cmpreal := SEED*3.141592;
tmpint := integar(tmpreal);
temp := tmpreal - sixdigit(tmpint);

if temp >= 6.5 then

tmpint := tmpint + 1;
tmpreal := tmpreal - sixdigit(tmpint);
else
tmpreal := temp;
! end if;

if tmpreal <= 0.8 then
tmpreal := -tmpreal;
end if;

™

tmpreal := 2.0680*tmpreal;
R(I) :=float{tmpreal);
SEED := tmpreal;

end loop;

return R;

end GGUBS;

"'1'7#"-’“7'".“

- ——— — - — — ——— —— > ——— S —— —D L = —— Ay — —-——— — — - ——— ——

proczdure INITLZ(CLOCK,TLE,B,S: in out float;
A IMEVT,LQT,LST,MQ,F,ND: in out integer;
) IIR : in out integer;
\d MIAT,XXT : in out float;
R : in out RN;
FEL : in out FUTURE_EVENT) is
--SET SIMULATION CLOCK TO ZERO.
--ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
--INITIALIZE CUMULATIVE STATISTICS TO 0.
® RR: float;
X: float;
--GENERALTE TIME OF FIRST ARRIVAL, IAT, AND SCHEDULE FIRST
. --ARRIVAL IN FEL(1)K.SET FEL(2) TO "INFINITY: TO INDICATE
- --THAT A DEPARTURE 1S NOT POSSIBLE WHILE THE SYSTEM IS EMPTY

begin

1438




'r'."""ﬂ“"_\""v"‘?':;'. - Dt St A iad. S s Sl B Shats Thads gt 20 gn 3 v Y ———r—r

CLIOCK := 90.0;
IMEVT := 3;
LT := 0;

LST := 2;

TLE := J4.9;

3 1= J.9;

12 ::=0;

S = ¥.9;

F :=0;

ND := @;

RR := R(IIR);
X := =LN(RR);
L = MIAT * X;

XLT := 1.39;

FEL(1l) := CLOCK + X;
FEL(2) := 1.0e39;
IIR := IIR + 1;

end INITLZ;

procedure TIMADV (IMEVT,NUMEVS,ND,F,IIR,MQ,II : in out
integer;
CLOCK,B,S,XXT,MIAT,MSVT,DSEED : in out
float;
FEL : in out FULURE_EVENT) is
--TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON
~-~FUTURE EVENT LIST AND ADVANCES THE CLOCK.
FMIN: float:= 1.3e29;
~--SEARCH FUTURE EVENT LIST FOR NHEXT EVENT.

begin

IMEVT

:ﬂ;
for I in 1l

.. NUMEVS loop
if FEL(I) >= FMIN then null;

else

FMIN := FEL(I);
IMEVT := I;

end if;
end loop;

if IMEVT > @ then null;

else
~-ERROR CONDITION : FUTURE EVENT LIST EMPTY.

189

R N e e e e T -
P . .. .t . L L ot L .
NTRPY I SR T e . IR PIR U PP IR AT RATRIT AR I TR S

A




e B - e AR 8 — —r—
ClCE RN R o VR T —— 4 CBRaCRAN-Ahe 4 S Mo M A Sven a4 . Tw e e —vvw

I1 := 11;
PUT (" FUTURE EVENT LIST EMPTY - SIMULATION CANNOT
CONTINUE.") ;
RPTGEN (B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ) ;
end if;
--ADVANCE SIMULATION CLOCK
--NEXT EVENT IS TYPE "IMEVT", WHICH WILL OCCUR
--AT TIME FEL(IMZVT).
CLOCK := FEL(IMEVT):;

end TIMADV;

. - - — — - - - — - VI . S . - . . = = - S D - D - D T D = - . - D " > > = w =

4 procedure ARRVL(LST,LQT,MQ,IIR,ND,F,II : in out integer;
CLOCK ,B,TLE,MSVT,XXT ,MIAT,S,DSEED : in out
float;
CHKOUT : in out ARRIVE;
FEL : in out FUTURE_EVENT;
R : in out RN) is
--DETERMINE IF SERVER IS BUSY ( IS TRUCK BEING CURRENTLY
--UNLOADED) .
RR,X,IAT : float;
I : integer;

oegin

if LST = 1 then
LQT := LQT +1;
I := LQT + LST;

if I > 100 then

-—ERROR CONDITION dAS OCCURRED. ARRAY CHKOUT HAS OVERFLOWED.
--~INCREASE DIMENSION QOF VARIABLE CHKOUT(I).

II := 11;

PUT (" OVERFLOW IN ARRAY CHKOUT. INCREASE
DIMENSION.,"):

NEW_LINE;

PUL(" SIMULATION CANNOT CONTINUE."):

RPTGEN (B,CLOCK,S,XXT,MIAT ,MSVT ,DSEED,ND,F,IIR,MQ);

else

CAROUT(I) := CLOCK;
--UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S, ND, AND F
--ARE NOT UPDATED WHEN AN ARRIVAL OCCURS.

B := 3 + (CLOCK - TLE);

TLE := CLOCK;

if LQT > MQ then
MQ := LQT;
end if;

119




--GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT
--ARRIVAL EVENT.

KRR := R(IIR);

X := =-LN(RR):;

IAT := MIAT * X;
XXT := XXT + 1.0;
FEL(l1) := CLOCK + IAT;
IIR := IIR +1;
end if;
else

--SERVER IS IDLE. UPDATE SYSTEM STATE AND RECORD ARRIVAL
--TIME OF NEW CUSTOMER.
LST := 1;
CHKOUT(1l) := CLOCK;
--GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND
1 --SCHEDULE THE DEPARTURE FOR THE ARRIVAL.,
RR:= R(IIR);

X := ~-LN(RR);
X := MSVT * X;
FEL(2) := CLOCK + X;
TLE := CLOCK;
IIR := IIR + 1;
if LQT > MQ then
MQ := LQT;
end if;
RR := R(IIR):;
X := -LN(RR);
JAT := MIAT * X;
XXT := XXT + 1.9;
FEL(l) := CLOCK + IAT;
IIR := IIR + 1;
end if;
end ARRVL;

procedure DPART(B,CLOCK,TLE,S,MSVT : in out float;
3 ND,F,LQT,IIR,LST : in out integer;
CHKOUT : in out ARRIVE;
R : in out RN;
FEL : in out FUTURE_EVENT) is
-~UPDATE CUMULATIVE STATISTICS: B, S, ND, F.
1 -~NOTE: LQT IS DECREASING SO MQ DOES NOT CHANGE NOW.
RT,RR,X,SVT : float;
{ I1 : integer;

j begin

111




TS T A S T S T T R T TN R T ST s e ey

B := B + (CLOCK - TLE);
TLE := CLJCK;

RT := CLOCK - CHKOUT(1l);
S := S + RT;

ND := ND + 1;

i? if RT > 4.9 then
b~ F = F + 1;

? end if;
J -—CHECK CONDITION OF WAITING LINE.
‘ if LQT >= 1 then
for I in 1l ..
I1 := 1 + 1
CHKOUT(I) :
end loop;
--UPDATE SYSTEM STATE.
LQT := LQT - 1;
--GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
--SERVICE, AND SCHEDULE NEXT DEPARTURE EVENT.
RR := R(IIR);
X := =-LN(RR);
SVT := MSVT * X;
FEL(2) := CLOCK + SVT;
IIR = IIR + 1;

LQT loop

= CHKOUT(I1);

else

--NO CUSTOMERS IN LINE. SERVER BECOMES IDLE.
--NEXT DEPARTURE TIME SET TO "INFINITY".
LST := 9;
FEL(2) := 1.90e30;
end if;

end DPART;

. — —— — ——— ——— — —— — — ——— = ——— T —— — D W = - - - - - —— —— - -
- — - — — - - —— - —— D - - - - ———— ————— oy
. — - ——— —— —— — - — ———— ————— — ———— —p —-p - D - . D D = - — — — - — - - - -

begin

while II <= 10 loop
--WE WILL USE ONE STRING OF UNIFORM RANDOM NUMBERS
R := GGUBS(DSEED) ;
-~IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
IIR := 1;
-~CALL INITILIZATION ROUTINE
INITLZ (CLOCK,TLE,B,S,IMEVT,LQT,LST,MQ,F,ND,IIR,
MIAT,XXT,R,FEL);

112




--CALL TIME ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
--AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.
while ND < NCUST loop

TIMADV (IMEVT,NUMEVS,ND,F,IIR,MQ,II,CLOCK,B,S,XXT, MIAT,
MSVT,DSEED, FEL) ;

--VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.

--IMEVT = 1 FOR AN ARRIVAL

-=-IMEVT = 2 FOR A DEPARTURE

if IMEVT = 1 then
ARRVL (LST,LQT,MQ,IIR,ND,F,II,CLOCK,B,TLE,MSVT,XXT,

MIAT,S,DSEED,CHKOUT,FEL,R) ;

else
DPART(B,CLOCK,TLE,S,MSVT,ND,F,LQT,IIR,LST,CHKOUT,R,FEL) ;
end if;
end loop;
--CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURN TO
-=-TIMADV.
case II is
when 1 => DSEED := 567.9;
when 2 => DSEED := 459.0;
when 3 => DSEED := 561.0;
when 4 => DSEED := 663.8;
when 5 => DSEED := 613.0;
when 6 => DSEED := 867.0;
when 7 => DSEED := 969.0;
when 8 => DSEED := 1071.9;
when 9 => DSEED := 1173.0;
when 18 => DSEED := 2717.9;
when others => null;

end case;

RPTGEN (B,CLOCK,S ,XXT ,MIAT,MSVT ,DSEED,ND,F,IIR,MQ);
--WHEN SIMULATION OVER GENERATE REPORTS.

II := II + 1;

case II is

when 2 => DSEED := 459.9;
when 3 => DSEED := 561.9;
when 4 => DSEED := 663.8;
when 5 => DSEED := 613.9;
when 6 => DSEED := 867.0:
when 7 => DSEED := 969.0;
when 8 => DSEED := 1071.0;
when 9 => DSEED := 1173.0;

when 18 => DSEED := 2717.0;
when others => null;

end case;

end loop;

end trk;

113

..............

..........................................

(L

.........

.

...........

)
|
1




_____ TegRrT TRy BT LYY YY YT Y

v‘l;"—"‘b

APPENDIX M

SOURCE LISTING
TRUCK SIMULATION PROGRAM
ADA LINE-BY-LINE TRANSLATION WITH 6500 ELEMENT ARRAY
VADS CCOMPILER RELEASE V04.926

- — . —— — D - B R D S D e . D D ) D D D D - ) - D D D - D - oy —— - - - ——— -

- — . — - —— = . D D D G e D P D AP P e D VP S WD e D VI D M G SR PG R WD S D D T R D P D NP D P = -

-- THIS PROGRAM IS THE SINGLE SERVER QUEUE SIMULATION

-- PROGRAM WRITTEN IN FORTRAN., TITLE OF THE PROGRAM IS

-- TRUCK. T4IS PROGRAM IS A LINE BY LINE TRANSLATION OF THE
== FORTRAN PROGRAM INTO ADA.

R G D - "y - —— - —— D —— D —— - - - T - P S D - S D —————— —

. - —— — . . —— - —— —— - —— . - G . - ——— D - - —— -

with text i0; use text_io;
with log; use log;

procedure trk is

package int_io is new integer_io(integer);
package real_io is new float_io(float);
use int_io; use real_io;

NR : integer;

DSEED : float := 567.9;

type RN is array(integer range 1 .. 6500) of float;
type FUTURE_EVENT is array (1 .. 2) of float;
type ARRIVE is array (1 .. 100) of float;
MIAT : float := 1.8/3.9;

MSVT : float := 3.25;

CLOCK,TLE,B,S : float;

NUMEVS : integer :=2;

I1 : integer := 1;

LQT,LST,MQ,F : integer;

ND,IIR,IMEVT : integer;

AXT : float;

CHKOUT : ARRIVE;

R : RN;

FEL : FUTURE_EVENT;

NCUST : integer := 3009;

T

2 orocedure RPTGFV(B,CLOCK,S,XXT,MIAT,MSVT,DSEED : in out
b float; ND,F,IIR,MQ : in out integer) is
-~COMPUTE SUMMARY STATISTICS.

- 114
-




RHO, AVGR: float;
XX1, XX2: float;
PC4: float;

begin
RHO := B/CLOCK;
AVGR := S/float (ND);
PC4 := float(F)/float(ND);
‘ - XX1 := S/CLOCK;
XX2 := XXT/CLOCK;
put (" TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-

SINGLE SERVER QUEUE");
new_line; new_line; new_line;

put (" DSEED= "); put(DSEED); new_line;

put (" MEAN ARRIVAL TIME(MIAT) = "); Dut (MIAT);
new_line;

put ("™ MEAN SERVICE TIME(MSVT) =

"); put(MsVT);
new_line;

new_line;

put (" PROPORTION OF TIME DOCK CREW IS BUSY =");

put (RHO) ;

new_line; new_line;

put (" MAXIMUM LENGTH OF WAITING LINE ="); put(MQ):;

new lina; new line;

put{"™ AVERAGE TIME TO TRANSIT SYS."); put(AVGR);

put ("HOURS.") ;

new_line; new_line;

put (" PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS..
s IN THE SYSTEM"); put(PC4);

- new_line; new_line;

put (" SIMULATION RUN LENGTH"); put(CLOCK):;

put ("HOURS.") ;

new_line; new_line;

put (" NUMBER OF TRUCKS UNLOADED ="); put(ND);
new_line; new_line;

put (" NUMBER OF RANDOM NUMBERS USED ="); put(IIR);

new line; new line;

put (" AVERAGE NUMBER OF UNITS IN SYS.= "); put(XXl);
new_line; new_line;

put (" TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=");
putc(S);

put{" (TRUCKS PER HR)");

new_line; new_line;

put (" AVERAGE NUMBER OF ARRIVALS PER HR= ")

put (XX2):;

new_line; new_line; new_line; new_line;

PP -

——————y

P P

end RPTGEN;

d 115




R AN AR S i Il At Tl ol el Shh Bk Saulh Shad Madl sl At e~ Ao e Wdiac S A Aite W Suie fess St Suh 8 ~—gy . — -
. A D ERACRATNRCIEDM R e tte Bl e e A Pa Ve e S A-A S AR A SA RS A A v sen i et dh s M A SR

function GGUBS(DSEED: in float) return RN is
type sixdigit is digits 6;
tmpint : integer;
tmpreal, temp : sixdigit;
SEED : sixdigit;

begin
SEED := sixdigit (DSEED);
for I in R'range loop
tmpreal := SEED*3.141592;
tmpint := integer(tmpreal);
temp := tmpreal ~ sixdigit(tmpint);

if temp >= @#.5 then
tapint := tmpint + 1;

tmpreal := tmpreal - sixdigit(tmpint);
else
tmpreal := temp;
end if;
if tmpreal <= 9.0 then
tmpreal := ~-tmpreal;
end if;

tmpreal := 2.000*tmpreal;
R(I) :=float(tmpreal);
SEED := tmpreal;

end loop;

return R;

end GGUBS;

D — - T - —— = S — - — D T S — D - D - - - - - —— D - —— — - —— - -

procedure INITLZ(CLOCK,TLE,B,S: in out float;
IMEVT,LQT,LST,MQ,F,ND: in out integer;
IIR : in out integer;
MIAT,XXT : in out float;
R : in out RN;
FEL : in out FUTURE_EVENT) is
-~SET SIMULATION CLOCK TO ZEROQ.
-~ASSUME SYSTEM IS EMPTY AND IDLE AT TIME ZERO.
~-~INITIALIZE CUMULATIVE STATISTICS TO 2.
RR: float;
X: float;
-~GENERALTE TIME OF FIRST ARRIVAL, IAT, AND SCHEDULE FIRST
-~ARRIVAL IN FEL(l)K.SET FEL(2) TO "INFINITY: TO INDICATE
-~THAT A DEPARTURE IS NOT POSSIBLE WHILE THE SYSTEM IS EMPTY

begin

116

........................




P

T

Tr R R e R AR A et S e SNl ate s ) e T Ul e - SEN - e e M e

CLOCK := d.0;
IMEVT := 0;
LT := 8;

LST := 2;

TLE := ¥.0;

B := 8.9;

12 :=3;

S := 0.9;

F := d;

ND := 9;

RR := R(IIR);
X 1= =-LN(RR);
X := MIAT * X;

XXT := 1.3;

FEL(1l) := CLOCK + X;
FEL(2) := 1.0e30;
IIR := IIR + 1;

end INITLZ;

D - — = — - - —— — - — - - — = —— . ——— - - —— - ——— ———

porocedure TIMADV (IMEVT,NUMEVS,ND,F,IIR,MQ,II : in out
integer;
CLOCK,B,S,XXT,MIAT,MSVT,DSEED : in out
float;
FEL : in out FUTURE_EVENT) is
--TIME ADVANCE ROUTINE: FINDS NEXT EVENT ON
-=FUTURE EVENT LIST AND ADVANCES THE CLOCK.
FMIN: float:= 1.de29;
--SEARCH FUTURE EVENT LIST FOR NEXT EVENT.

begin

IMEVT := J;
for I in 1 .. NUMEVS loop

if FEL(I) >= FMIN then null;
else

FMIN := FEL(I);
IMEVT := I;

end if;
end loop;

if IMEVT > 8 then null;

else
--ERROR CONDITION : FUTURE EVENT LIST EMPTY.

117




-

ITI := 11;
PUT(" FUTURE EVENT LIST EMPTY - SIMULATION CANNOT
CONTINUE.");

RPTGEN (B,CLOCK,S,XXT,MIAT,MSVT,DSEED,ND,F,IIR,MQ);

end if;
--ADVANCE SIMULATION CLOCK
--NEXT EVENT IS TYPE "IMEVT", WHICH WILL OCCUR
-=-AT TIME FEL(IMEVT),.

CLOCK := FEL(IMEVT);

end TIMADV; J
procedure ARRVL(LST,LQT,MQ,IIR,ND,F,II : in out integer;
CLOCK,B,TLE,MSVT ,XXT ,MIAT,S,DSEED : in out
float;

CHKOUT : in out ARRIVE;
FEL : in out FUTURE_EVENT;
R : in out RN) 1is
--DETERMINE IF SERVER IS BUSY ( IS TRUCK BEING CURRENTLY

--UNLOADED) .
RR,X,IAT : float;
I : integer;

begin

if LST = 1 then
LQT := LQT +1;
I := LQT + LST;

if I > 1809 then
~~-EZERROR CONDITION HAS OCCURRED. ARRAY CHKOUT HAS OVERFLOWED.

--IJCREASE DIMENSION OF VARIABLE CHKOUT(I).

IT := 11;
PUT(™ OVERFLOW IN *RRAY CHKOUT. INCREASE

DIMENSION.,");
NEW_LINE;
PUT(" SIMULATION CANNOT CONTINUE.");

RPTGEN (B,CLOCK,S,XXT,MIAT,MSVT,DSEED ,ND,F,IIR,MQ) ;

alse

CHKOUT(I) := CLOCK;
--UPDATE CUMULATIVE STATISTICS B AND MQ. NOTE: S, ND, AND F

--ARE NOT UPDATED WHEN AN ARRIVAL OQOCCURS.
B := B + (CLOCK - TLE);
TLE := CLOCK;

if LQT > MQ then

MQ := LQT;
end if;

118

....................................
................




--ARRIVAL EVENT.
RR := R(IIR);

X := =LN(RR);
IAT := MIAT * X;
XXT := XXT + 1.9;
FEL(l1) := CLOCK + IAT;
IIR := IIR +1;
end if;
else

--TIME OF NEW CUSTOMER.

LST := 1;

CHKOUT(1) := CLOCK;
--GENERATE A SERVICE TIME FOR THE NEW ARRIVAL AND
--SCHEDULE THE ODEPARTURE FOR THE ARRIVAL.

RR:= R(IIR);

X :

= ~-LN(RR);
X := MSVT * X;
FEL(2) := CLOCK + X;
TLE := CLOCK;

IIR := IIR + 1;

if LQT > MQ then

MQ := LQT;
end if;
RR := R(IIR);
X := -LN(RR);
IAT := MIAT * X;
XXT := XXT + 1.0;
FEL(l) := CLOCK + IAT;
IIR := IIR + 1;
end if;
end ARRVL;

procedure DPART(B,CLOCK,TLE,S,4M3VT : in out float;
ND,F,LQT,IIR,LST : in out integer;
CHKOUT : in out ARRIVE;
R : in out RN;
FEL : in out FUTURE EVENT) is
--UPDATE CUMULATIVE STATISTICS: B, S, ND, F.
--NOTE: LQT IS DECREASING SO MQ DOES NOT CHANGE NOW.
RT,RR,X,SVT : float;
I1 : integer;

begin

(A T R e T K T T e w T e T

--GENERATE AN INTER ARRIVAL TIME AND SCHEDULE THE NEXT

--SERVER IS IDLE. UPDATE SYSTEM STATE AND RECORD ARRIVAL

. — - — - . - —— — D - — —— — - D —— — — — - —— ——  ——— — —— - —— - ———

YT T YT

Y




T e e W e

B (= B + (CLOCK - TLE);
TLE := CLOCK;
RT := CLOCK = CHKOUT(1l);

S := § + RT;
ND := ND + 1;

if RT > 4.8 then
F := F + 1;
end if;

-—=CHECK CONDITION QJF WAAITING LINE.
1if LQT >= 1 then
for I inl ..
Tl =1 + 1
CdKOoUT (1)
end loop;
{ --UPDATE SYSTEM STATE.
: LQT := LQT - 1;
--GENERATE NEW SERVICE TIME FOR CUSTOMER BEGINNING
--SERVICE, AND SCHEDULE NEXT DEPARTURE EVENT.
RR := R(IIR);
X -LN(RR) ;
SVT := M3VT * X;
FEL(2) := CLOCK + SVT;
IIR := IIR + 1;

LQT loop

= CHKOUT(I1l);

R >

BAEEes wa

else

--NO CUSTOMERS IN LINE. SERVER BECOMES IDLE,.
--NEXT DEPARTURE TIME SET TO "INFINITY".
LST := @;
FEL(2) := l.9e38;
end if;

end DPART;

- - — . — > OO i - - — — o — - — - "  —_—— ) = D —— W= S R N ——— — " "ap
- D . — — - " ——— — - ——— -y - —— D . - - —n . - - D D ——— B - — - - -

- D - - - D ——— — - ——— = . — —— ——— — ————— N > —————— -

- - - — - — —— - - - — - ——— —— . —— - . - - — D = =D WD wm . G - . -

Ly

begin

el
P

while II <= 10 loop
~=WE WILL USE ONE STRING OF UNIFORM RANDOM NUMBERS
R := GGUBS (DSEED) ;
--IIR WILL INDEX THE RANDOM NUMBER GENERATOR.
IIR := 1;
~=CALL INITILIZATION ROUTINE
INITLZ (CLOCK,TLE,8,S,IMEVT,LQT,LST,MQ,F ,ND,IIR,
MIAT,XXT,R,FEL);

AT

120

- - -
R

@ e




-=-CALL TIME ADVANCE ROUTINE TO DETERMINE IMMINENT EVENT
--AND ADVANCE CLOCK TO THE IMMINENT EVENT TIME.
while ND < NCUST loop

TIMADV (IMEVT,NUMEVS,ND,F,IIR,MQ,II,CLOCK,B,S,XXT,MIAT,
MSVT,DSEED,FEL) ;
--VARIABLE "IMEVT" INDICATES THE IMMINENT EVENT.
--IMEVT = 1 FOR AN ARRIVAL
--IMEVT = 2 FOR A DEPARTURE
if IMEVT = 1 then
ARRVL(LST,LQT,MQ,IIR,ND,F,II,CLOCK,B,TLE,MSVT, XXT,
MiaT,S,DSEED,CHKOUT,FEL,R) ;

alse
DPART(B,CLOCK,TLE,S,MSVT,ND,F,LQT,IIR,LST,CHKOUT,R,FEL) ;
end if;
end loop;
-~-CHECK TO SEE IF SIMULATION IS OVER. IF NOT RETURN TO
-~-TIMADV.
case II is
when 1 => DSEED := 567.08;
when 2 => DSEED := 459.0;
when 3 => DSEED := 561.0;
when 4 => DSEED := 663.9;
when 5 => DSEED := 613.8;
when 6 => DSEED := 867.0;
when 7 => DSEED := 969.4;
whnen 8 => DSEED := 1071.9;
when 9 => DSEED := 1173.0;
when 18 => DSEED := 2717.0;
when others => null;

end case;

RPTGEN(B,CLOCK,S,XXT ,MIAT,MSVT,DSEED,ND,F,IIR,MQ);
--WHEN SIMULATION OVER GENERATE REPORTS.

IT := I1 + 1;

case II is
when 2 => DSEED := 459.90;
when 3 => DSEED := 561.8;
when 4 => DSEED := 663.0;
when 5 => DSEED := 613.0;
when 6 => DSEED := 867.8;
wnen 7 => DSEED := 969.0;
when 8 => DSEED := 1871.0;
when 9 => DSEED := 1173.0;
when 13 => DSEED := 2717.9;
when others => null;

end case;

end loop;

end trk;

121




N N i i LA SN RAAa Aty LAl LW W e W, L adid A 2l 2 te VoY W——

APPENDIX N

SOURCE LISTING
TRUCK SIMULATION MAIN PROGRAM
ADA REDESIGN
TELESOFT-ADA VERSION 1.5

use TEXT_IO;
use FLOAT_IO;
use SIMULATION ROUTINES;

with TEXT_IO

~e

-e

with SIMULATION_ROUTINES

procedure TRUCK_SIMULATION is

MEAN INTER_ ARRIVAL TIME : FLOAT := 1.8/3.8;
MEAN SERVICE _TIME : FLOAT := B0.25 ;
STATS : STATISTICS:;
SERVICE_QUEUE : QUEUE;

RANDOM_NUMBER : RANDOM_ NUMBER_RECORD;

begin
while STATS.REPETITION < 14 loop
INITIALIZE (STATS,
SERVICE QUEUE,
MEAN _ INTER ARRIVAL_ TIME,
RANDOM NUMBER),

while STATS.TOTAL _DEPARTURES < 1504 1loop
if STATS .NEXT ARRIVAL < STATS.NEXT_DEPARTURE then
GENERATE _ ARRIVAL (STATS,
SERVICE_QUEUE,
MEAN INTER ARRIVAL_TIME,
MEAN_ SERVICE TIME,
RANDOM_NUMBER) ;
else
GENERATE DEPARTURE (STATS,
SERVICE QUEUE,
MEAN SERVICE _TIME,
RANDOM N'IM3IE R),
end if;
end loop;
GENERATE_REPORT (STATS,
SERVICE_QUEUE,
MEAN _ INTER ARRIVAL_TIME,
MEAN SERVICE _TIME,
RANDOM_NUMBER),
end loop;
end TRUCK_SIMULATION;

122

et o SN

PR I




N an e oo aa e e e

-

v

with TEXT_IO;

APPENDIX O

SOURCE LISTING
SIMULATION ROUTINES PACKAGE
ADA REDESIGN
TELESOFT-ADA VERSION 1.5

use TEXT I0O;
use FLOAT_IO;
use INTEGER_IO;

_'.‘-'-'_-'."V.'.“-‘\.'.\-"K'-'k‘.‘\.‘ LA Ane A e At JENS A Al Sh 6 oo b v

with LOG; use LOG;
package SIMULATION_ROUTINES is
type SEED_ARRAY is array (INTEGER range 1..18 ) of FLOAT;
type RANDOM NUMBER RECORD is record
NUMBER :  FLOAT;
SEEDS : SEED_ARRAY := ( 1 => 567.0,
2 => 459.9,
3 => 561,90,
4 => 663.3,
5 => 613.8,
6 => 867.8,
7 => 969.9,
3 => 1071.9,
9 => 1173.9,
19 => 2717.3);
DSEED : FLOAT;
COUNT INTEGER;

end record;

type SIMPLE_ARRAY is
array (INTEGER range 1..1080) of FLOAT;

type STATISTIC3 is record

CLOCK : FLOAT;
NEXT_ARRIVAL : FLOAT:
NEXT_ DEPARTURE : FLOAT;
TIME LAST_EVENT : FLOAT;
SERVER BUSY _TIME : FLOAT;
TOTAL_ TIME N _SYSTEM : FLOAT;
TOTAL ARRIVAL3 : INTEGER;
TOTAL_DEPARTURES : INTEGER;
MAX_Q LENGTH : INTEGER;
FOUR HOURS IN_SYSTEM INTEGER;

INTEGER := 8;

.. oo

REPETITION
end record;

123

...........
......................
......................................................

PPN A SR S R P P R

o




M A A i A et et Aaca s |

type QUEUE is record
ELEMENT : SIMPLE_ARRAY;
LENGTH : INTEGER := 9;
IS _IDLE : BOOLEAN := TRUE;
end record;

procedure GENERATE ARRIVAL

(STATS : in out STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN_INTER_ARRIVAL_TIME : in FLOAT;
MEAN SERVICE_TIME : in FLOAT;
RANDOM_NUMBER : in out

RANDOM_NUMBER_RECORD) ;

procedure GENERATE DEPARTURE

(STATS : in out STATISTICS;
SERVICE_QUEUE : in out QUEUE;
MEAN_SERVICE TIMZ : in FLOAT;

, RANDOM_NUMBER in out
» RAJDOM_NUMBER RECORD) ;

.o

procedure INITIALIZE

(STATS ¢ in out STATISTICS;
SERVICE QUEUE ¢+ in out QUEUE;

MEAN INTER ARRIVAL _TIME : in FLOAT;
RANDOM NUMBER : 1n out

RANDOM_NUMBER_RECORD) ;

procedure GENERATE_REPORT

- (STATS ¢+ in out STATISTICS;
;; SERVICE_QUEUE : in out QUEUE;
- MEAN_INTER_ARRIVAL TIME : in FLOAT;
» MEAN_ SERVICE TIME : in FLOAT;
B RANDOM_NUMBER in out
r RANDOM NUMBER_RECORD) ;
b
- procedure RAN

(RANDOM_NUMBER : in out RANDOM_NUMBER_RECORD) ;

end SIMULATION_ROUTINES;

- — D —— — - — —— —— — —— " — - —— ——— - ——— — - — - ———— -

- . —— — - — — —— ——— —— . ———— - - ——— . A b W M e e . N - b W

package body SIMULATION_ROUTINES is

procedure GENERATE_ARRIVAL

(STATS : in out STATISTICS;
SERVICE_QUEUE : in out QUEUE;
MEAN_INTER_ARRIVAL TIME : in FLOAT;

MEAN _ _SERVICE_TIME : in FLOAT;
RANDOM NUMBER : in out

RANDOM_NUMBER_RECORD) 1is

124

o q




N YR WS P S ¢

SERVICE TIME

FLOAT;

INTER_ARRIVAL_TIME : FLOAT;
begin
STATS.CLOCK := STATS.NEXT ARRIVAL;

SERVICE QUEUE.LENGTH := SERVICE QUEUE LENGTH + 1;
SERVICE __WUEUE.ELEMENT (SERVICE QUEUE LENGTH)

:= STATS.CLOCK;
if SERVICE_QUEUE.IS_IDLE then

SERVICE_QUEUE.IS_IDLE := FALSE;
RAN (RANDOM NUMBER) ; i
SERVICE_TIME := MEAN_SERVICE_TIME
* (-LN
(RANDOM_NUMBER.NUMBER) ) ;
STATS .NEXT_DEPARTURE := STATS,.CLOCK
+ SERVICE_TIME;
else
STATS.SERVER BUSY_TIME :=  STATS.SERVER_BUSY_ TIME
+ (STATS.CLOCK
- STATS.TIME_LAST_EVENT);
end if;

STATS.TIME LAST EVENT : STATS.CLOCK;

STATS . TOTAL ARRIVALS : STATS .TOTAL_ ARRIVALS + 1;
if SERVICE QUEUE LENGTH > STATS.MAX Q LENGTH then
oTATS.MAX_Q_LENuTH SERVICE QUEUE LENGTH;

end if;
RAN (RANDOM_NUMBER) ;
INTER_ARRIVAL_TIME :

i

MEAN_INTER ARRIVAL_TIME
* (-LN (RANDOM_NUMBER.NUMBER)
STATS .NEXT_ARRIVAL := STATS.CLOCK
+ INTER_ARRIVAL_TIME;
end GENERATE_ARRIVAL;

- — i - ———— — - - —— — — - — — —— P — N - — —— — - ——— - - — —

procedure GENERATE DEPARTURE

)i

(STATS : in out STATISTICS;
SERVICE QUEUE : 1in out QUEUE;
MEAN SERVIC FIME : in FLOAT;
NDOM NUMBLR : in out
RANDOM_NUMBER_RECORD) is
TIME _IN_SYSTEM THIS DEPARTURE : FLOAT;
SERVICE _TIME : FLOAT;
begin
STATS.CLOCK := STATS.NEXT_DEPARTURE;
STATS.SERVER_BUSY TIME := STATS. SERVER BUSY TIME
+ (STATS.CLOCK
- STATS.TIME_LAST_EVENT);
STATS.TIME_LAST_ EVENT = STATS.CLOCK;
TIME_IN_SYSTEM THIS_DEPARTURE :=  STATS.CLOCK

- SERVICE_QUEUE.ELEMENT(1l);
STATS.TOTAL_TIME IN_SYSTEM

125

...................
..........

.............

--------




.“r -

aananns . St

D S gt Sankl i ed DD S Auialh Rt At S S gt S Al i St Aot JbA B St Bl Sd B Jhoi Adt Wit Sl S Rt Sl Zhdh ol Shdie i B 4

HE STATS. TOTAL TIME IN SYSTEM
+ TIME IN_ SYSTEA THIS DEPARTURE,
STATS.TOTAL_DEPARTURES : TSTATS. TOTAL DEPARTURES
+ 1;

if TIME IN_SYSTEM_THIS DEPARTURE > 4.0 then
STATS.FOUR_HOURS_IN_SYSTEM
:=~ STATS.FOUR_HOURS_IN SYSTEM + 1;

end if;
if SERVICE_QUEUE.LENGTH - 1 = P then -- if queue
-~ will be
-~ empty
-~ after this
-- departure
SERVICE_QUEUE.LENGTH := 9;
SERVICE_QUEUE.IS_IDLE := TRUE;
STATS .NEXT_DEPAPTURE := 1.0e39;

else
for INDEX in 1..SERVICE _QUEUE.LENGTH - 1 loop
SERVICE QUEUE. ELEMENT (INDEX)

:= SERVICE_QUEUE.ELEMENT(INDEX + 1l):;
end loop;
SERVICE_QUEUE.LENGTH
RAN (RANDOM_NUMBER) ;
SERVICE TIME :

= SERVICE_QUEUE.LENGTH - 1;

MEAN_SERVICE_ TIME
* (~LN
(RANDOM_NUMBER.NUMBER));
STATS .NEXT_DEPARTURE := STATS.CLOCK
+ SERVICE_TIME;
end if;
end GENERATE DEPARTURE;

- —— " ——— — —— D — — — - - — . —— — — —— ——— — G — - - . —— - S —— — - — - -

D . — D - . — — - - " — D ——— — —— - — - - - —— . — - —— - -

procedure INITIALIZE

(STATS : in out
STATISTICS;
SERVICE_QUEUE : in out QUEUE;
MEAN_INTER _ARRIVAL_TIME : in FLOAT;
RANDOM_NUMBER : in out
RANDOM_NUMBER _RECORD) is
ARRIVAL TIME : FLOAT;
oejin
STATS.REPETITION + 1;

STATS.REPETITION :
RANDOM_NUMBER.DSEED :

RANDOM_NUMBER.SEEDS
(STATS.REPETITION) ;
d;

RANDOM_NUMBER.COUNT :=
RAN (RANDOM_NUMBER) ;
ARRIVAL TIME = MEAN_INTER_ARRIVAL_TIME
* (-LN (RANDOM_NUMBER.NUMBER)) ;
STATS.CLOCK := 0.0;
STATS.TIME_LAST EVENT 1= 9.0;

126




L gm e aa o e o o e

rr;v--v-_'v-?. e

STATS.SERVER_BUSY_TIME = 2.0;

STATS .TOTAL TIME IN SYSTEM := 9.9;

STATS.TOTAL ARRIVALS =3 ;

STATS. TOTAQ_DEPARTURES = 9

STATS .MAX _Q LENGTH =4

STATS. FOUR HOURb IN_SYSTEM := 8 ;

STATS .NEXT ARRIVAL = STATS.CLOCK
+ ARRIVAL TIME;

STATS .NEXT_DEPARTURE = 1.,0e39;

SERVICE_QUEUE.LENGTH = 3;

SERVICE _QUEUE.IS_IDLE = TRUE;

end INITIALIZE;

- D D P D W - - P . D A D D o b . - - D WL wp W T - = D A - W . - - -

procedure GENERATE REPORT

(STATS : in out
STATISTICS;
SERVICE_QUEUE : in out QUEUE;
MEAN_ IVTER ARRIVAL TIME : in FLOAT;
MEAN SERVICn TIME s in FLOAT;
RANDOM~NUMBER : in out

RANDOM_NUMBER_RECORD) 1is
TEMP : FLOAT;
begin
NEW_LINE;
NEW_LINE;
PUT ("RANDOM NUMBER GENERATOR SEED");
PUT (RANDOM_NUMBER.SEEDS (STATS.REPETITION)) ;
NEW_LINE;
PUT ("MEAN INTERARRIVAL TIME = ");
PUT (MEAN_INTER_ARRIVAL_TIME) ;
NEW_LINE;
PUT ("MEAN SERVICE TIME = ");
PUT (MEAN_SERVICE_TIME);
NEW_LINE;
NEW_LINE;
PUT ("PROPORTION OF TIME DOCK CREwW IS BUSY = ");
TEMP := STATS.SERVER_BUSY_ TIME / STATS.CLOCK;
PUT (TEMP);
NEW_LINE;
NEW_LINE;
PUT ("MAXIMUM LENGTH OF WAITING LINE = ");
PUT (STATS.MAX Q LENGTH);
NEW_LINE;
NEW_LINE;
PUT ("AVERAGE TIME TO TRANSIT SYSTEM = ");
TEMP := STATS.TOTAL_TIME_IN_SYSTEM
/ FLOAT(STATS. TOTAL DEPARTURES),
PUT (TEMP);
NEW_LINE;
NEW_LINE;
PUT ("PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS

127




® T e T s TEW WO T e M W R W W R W R R Y R T
Dl A A L e Ve TR TR e e ERSR A AP P i BN A A Ad Jholh Aad Aed Sas Aot las da g+ s - i LA A Sk oMl aeh Sl o g —————v -.——-"

=");

TEMP := FLOAT (STATS.FOUR_HOURS_IN SYSTEM)

/ FLOAT (3TATS.TOTAL DEPARTURES) ;
PUT (T3HP;;
NEW LINE;
NEW_LINE;
PUT ("SIMULAPION RUN LENGTH = ")
PUT (STATS.CLOCK);
PUT (" HOURS");
NEW_LINE;
NEW_LINE;
PUT ("NUMBER OF TRUCKS UNLOADED
PUT (STATS.TOTAL_DEPARTURES) ;
NEW_LINE;
NEW_LINE;
PUT ("NUMBER OF RANDOM NUMBERS USED = ");
PUT (RANDOM NUMBER.COUNT) ;
NEW_LINE;

-,

")

NEW_LINE;
PUT ("AVERAGE NUMBER OF UNITS IN SYS. = ");
TEMP := STATS.TOTAL TIME_IN SYSTEM / STATS.CLOCK;

PUT (Tt 2);

NEW_LINE;

NEW_LINE;

PUT ("TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)
‘ ll\);

k PUT (STATS.TOTAL_TIME_IN_SYSTEM);

NEW_LINE;
NEW_LINE;
PUT ("AVERAGE NUMBER OF ARRIVALS PER HR = ");
TEMP := FLOAT (STATS.TOTAL_ARRIVALS) / STATS.CLOCK;
PUT (TEMP);
NEW _LINE;
NEA_LINE;
end GENERATE_REPORT;
procedure RAN (RANDOM_NUMBER : in out
RANDOM_NUMBER_RECORD) is
tmpint : integer;
tmpreal : float;
bagin
tmpreal := RANDOM_NUMBER.DSEED*3.141592;
tmpint := integer(tmpreal):
tmpreal := tmpreal - float(tmpint);
if tmpreal < 3.8 then
tmpreal := -tmpreal;
end if;
tmpreal := 2.0 * tmpreal;
RANDOM_NUMBER.NUMBER := tmpreal;
RANDOM_NUMBER.DSEED := tmpreal;
RANDOM_NUMBER.COUNT := RANDOM NUMBER.COUNT + 1;
end RAN;
end SIMULATION_ROUTINES;

[

128




~~~~~~

D B N R L A A A el A sl otk e SR ek

APPENDIX P

SOURCE LISTING
NATURAL LOG PACKAGE USED B8Y
ADA TRUCK SIMULATION PROGRAM

-~ CALCULATES NATURAL LOGS, EXPONENTIATION AND SQRTS

pacxkage log is
function LN (x: in float) return float;
function LN (<: in integer) return float;
function "**" (a: in float; x: in float) return float;
function SQRT (a: in float) return float;

bounds_error : exception;
end 103;

- — - ———— ——— - — —— — - - —— ———— - — —— — - - - - - - - —

package body log is

function LN (x: in float) return float is
result : float;
old: float;
term: float;
power: float;
oegin
i1f x>9.8 then
old :=0.9;
term :=(x-1.23)/(x+1.3);
result :=2.d*term;
power :=term;
for index in 1 .. integer'last loop
power :=power*term*term;
result :=resulc+(2.0*power)/float(2*index+l);
if old=result then
exit;
end if;
0old :=result;
end loop;
return result;
elsif x=0.4 then
return 1.4;
else
ralse bounds_error;
end if;

T T W T Y v wowTIw iwUw v W, w v =y

4

)

Py sy -




""—“Y

..—f,vv;iq—, vy

WY e——— T — ~—

v ————yv—¥

- > = - - o — - - -
. it . S = — - -~ "~ — - - = = -~ - - - > - -

- - — - D wn WS W = o S SR S D am an s - -
- - - - =

function LN (x: in integer)

begin
return(LN(float(x)))
end LN;
function "**" (a: in float; x: in float) return float 1s
factorial : float := 1.9;
result : float := 1.0;
power : float := 1.9;
old : float := 0.9;
begin
for limit in 1 .. integer'last loop
power := power* (x*LN(a));

factorial := factorial*float(limit);
result := result+(power)/factorial;
if old=result
then
exit;
end if;
old :=result;
end loop;
return result;

-—-_——-—————‘—-———-—————-——-——.-—-_—--—_——-.——_————-—_--—__———

- —— —— - - —— — — " T~ W i i T S D S A D W D D P D =

function SQRT (a: in float) return float is
begin
if a=3.d then
return 0.9;
else
return a**d.5;
end if;
end SQRT;
and log;
134
. R R I . R T R R R AR A




G S RCRMTA etk g . A Mt e e San b S SN dia et SR A A Rl g e Shai Seese Saahe 4 s e o ‘——,ﬂ

APPENDIX Q

SOURCE LISTING

TRUCK SIMULATION MAIN PROGRAM
ADA REDESIGN

VADS COMPILER RELEASE V#4.06

with SIMULATION ROUTINES ; use SIMULATION_ROUTINES;

procedure TRUCK_SIMULATION
MEAN INTER_ ARRIVAL _TIME
MEAN SERVICE TIME
STATS
SERVICE_QUEUE
RANDOM NUM3ER
begin -
while STATS.REPETITION < 10 1loop
INITIALIZE (STATS,
SERVICE_QUEUE,
MEAN INTER_ARRIVAL _TIME, |
RANDOM NUMBER), 3
while STATS.TOTAL DEPARTURES < 1588 loop '
if STATS. NEXT _ ARRIVAL < STATS. NEXT_DEPARTURE then
GENERATE __ ARRIVAL (STATS,
SERVICE_QUEUE, .
MEAN _ INTER ARRIVAL TIME, ]
MEAN _ “SERVICE _TIME,
RANDOM NUMBER)
else -
GENERATE_DEPARTURE (STATS, I
SERVICE_QUEUE, |
MEAN_SERVICE_TIME, ]
RANDOM_ NUMBER) ; 1

n

FLOAT
FLOAT
STATISTICS;
QUEUE;
RANDOM_NUMBER_RECORD;

e 0e g0 90 o0 |-
.. os
[ ]
[ S o
o »
NS
(S N

w
.
- &
~e

end if;

end loop; P

GENERATE_REPORT (STATS, i
SERVICE QUEUE, ]
MEAN_ INTER ARRIVAL TIME,
MEAN “SERVICE _TIME,
RANDOM NUMBER),

end loop;

LR e SR

exception
when CONSTRAINT_ERROR =>
GENERATE_REPORT (STATS,
SERVICE_QUEUE,
MEAN _ INTER ARRIVAL TIME,
MEAN SERVICE _TIME,

2 4 s . Benla s o & 2 P

131




- - - - v
M Are S SPEM e SR EPA SR SR S M S AN S A A A B E A AN A A A A A A oy At Al a'—-vw‘

RANDOM_NUMBER);
when others =>
GENERATE_REPORT (STATS,
SERVICE_QUEUE,
- MEAN_INTER_ARRIVAL_TIME,
- MEAN_SERVICE_TIME,
: RANDOM_NUMBER) ;

P end TRUCK_SIMULATION;

132




o A S Al ded S B Eed i e e e mbe g8 uve s oo ]

APPENDIX R

SOURCE LISTING }

TRUCK SIMULATION ROUTINES PACKAGE ‘
ADA REDESIGN !

VADS COMPILER RELEASE V04.86

with TEXT_IO;
with LOG; use LOG;

package SIMULATION_ROUTINES is

package FLOAT_ IO is new TEXT_IO.FLOAT_IO (FLOAT) ;
package INTEGER_IO is new TEXT_IO.INTEGER_IO (INTEGER);

type SEED_ARRAY is array (INTEGER range 1..108 ) of FLOAT;
type RANDOM NUMBER _RECORD is record

NUMBER : FLOAT;
SZEDS : SEED_ARRAY :=

—~~

567.0,
459.0,
561.9,
663.8,
613.9,
867.9,
969.49,
1971.0,
1173.9,
2717.0);

VWU & W N
LU (T T T T I I '}
VVVVVVVVYVYV

[

DSEED : FLOAT;
COUNT : INTEGER;
end record;

type SIMPLE_ARRAY is
array (INTEGER range 1..164) of FLOAT;

N 0 e o s g

type STATISTICS is record

CLOCK : FLOAT;
1 NEXT_ARRIVAL : FLOAT;
NEXT_DEPARTURE : FLOAT;
TIME_LAST EVENT : FLOAT;

SERVER_BUSY_TIME : FLOAT;

TOTAL_TIME IN_SYSTEM : FLOAT;
TOTAL_ARRIVALS : INTEGER;
TOTAL_DEPARTURES : INTEGER;
MAX_Q LENGTH : INTEGER;
FOUR_HOURS_IN_SYSTEM : INTEGER;

133




Ll el Ahal S Suss —— v - -

: REPETITION : INTEGER := 8;
\ end record;

type QUEUE is record

Sadebade st Setee ol

ELEMENT : SIMPLE_ARRAY;
LENGTH : INTEGER := 3;
IS_IDLE : BOOLEAN := TRUE;

end record;

procedure GENERATE ARRIVAL
(STATS
SERVICE_QUEUE

in out STATISTICS;
in out QUEUE;

MEAN_INTER_ARRIVAL_TIME : in FLOAT;
MEAN_SERVICE_TIME in FLOAT;
RANDOM_NUMBER in out

RANDOM_NUMBER_RECORD) ;

procedure GENERATE_DEPARTURE
(STATS
SERVICE_QUEUE
MEAN_SERVICE_TIME
RANDOM_NUMBER

in out STATISTICS;
in out QUEUE;
in FLOAT;
in out
RANDOM NUMBER_RECORD) ;

procedure INITIALIZE
{(STATS in out STATISTICS;
SERVICE QUEUE in out QUEUE;
MEAN_INTER_ARRIVAL TIME in FLOAT;
RANDOM_NUMBER : 1ln out

RANDOM_NUMBER_RECORD) ;

procedure GENERATE_REPORT
(STATS
SERVICE_QUEUE
MEAN_ INTER ._ARRIVAL_ TIME in FLOAT;
MEAN SERVICE _TIME in FLOAT;
RANDOM NUMBER : in out
RANDOM_NUMBER_RECORD) ;

in out STATISTICS:
in out QUEUE;

procedure RAN
(RANDOM_NUMBER : in out RANDOM_NUMBER_RECORD) ;

and SIMULATION_ROUTINES;

- ———— —— — - ——— — - — - —— - ——— - —— — — -—— — - — ——— - — —"

package body SIMULATION ROUTINES is

procedure GENERATE_ARRIVAL

(STATS : in out STATISTICS;
SERVICE_QUEUE : in out QUEUE;
MEAN_INTER_ARRIVAL TIME : in FLOAT;
MEAN_SERVICE_TIME : in FLOAT;
RANDOM_NUMBER : in out

134

e s et




T T

TV v

L O A el bt S i B At N L L L N N L T VTV Ty r v v .

RANDOM_NUMBER_RECORD) is

SERVICE_TIME : FLOAT;
INTER_ARRIVAL TIME : FLOAT;

begin
STATS.CLOCK := STATS.NEXT_ARRIVAL;
SERVICE QUEUE.LENGTH := SERVICE QUEUE.LENGTH + 1;
SERVICE_QUEUE.ELEMENT (SERVICE _ QUEUE.LENGTH)
:= STATS.CLOCK;
if SERVICE QUEUE.IS_IDLE then

SERVICE _QUEUE. IS IDLE := FALSE;
RAN (RANDOM VUMB’R),
SERVICE TIME := MEAN SERVICE TIME
- * (=LN
(RANDOM_NUMBER.NUMBER) ) ;
STATS .NEXT DEPARTURE := STATS.CLOCK
- + SERVICE_TIME;
else
STATS.SERVER BUSY TIME := STATS.SERVER_BUSY~TIME
- - + (STATS.CLOCK
- STATS.TIME_LAST_EVENT);
end if;

STATS.TIME LAST_EVENT := STATS.CLOCK;
STATS.TOTAL_ARRIVALS := STATS.TOTAL_ARRIVALS + 1;
if SERVICE QUEUE LENGTH > STATS.MAX Q LENGTH tnen
bTATS.MAX_Q_LENGTH = SERVICE_QUEUE LENGTH;

end if;
RAN (RANDOM_NUMBER);
INTER_ARRIVAL TIME := MEAN_INTER_ARRIVAL_ TIME

* (= LN (RANDOM_NUMBER NUMBER) ) ;
STATS .NEXT_ARRIVAL := STATS.CLOCK

+ INTER_ARRIVAL_TIME;

end GENERATE_ARRIVAL;

- - - -, " — - - - - —— —— — — D - — — . —— P T D = . P R T D A - — -

D p " - — ———— - = . . D D v . D o —h U wm E D B s = A . W W m e o n - —— -

procedure GENERATE DEPARTURE

(STATS : in out STATISTICS
SERVICE _QUEUE : in out QUEUE;
MEAN_SERVICE_TIME : in FLOAT;
RANDOM_NUMBER : in out
RANDOM_NUMBER RECORD) is
TIME_IN_SYSTEM THIS DEPARTURE : FLOAT;
aERVICE " TIME ¢ FLOAT;
begin
STATS.CLOCK STATS.NEXT DEPARTURE;

STATS.SERVER_BUSY_TIME
+ (STATS.CLOCK
- STATS.TIME_LAST_EVENT) ;
STATS.TIME LAST_EVENT = STATS.CLOCK;

STATS.SERVER_BUSY_ TIME

135




PIME_IN_SYSTEM THIS_DEPARTURE := STATS.CLOCK
- SERVICE_QUEUE.ELEMENT(I);
STATS.TOTAL_TIME_IN_SYSTEM
= STATS.TOTAL_TIME IN_ SYSTEM
+ TIME_IN SYSTEW THIS " DEPARTURE;
TSTATS. TOTAL DEPARTURES
+ 1;

)

STATS.TOTAL_DEPARTURES

if TIME IN_SYSTEM THIS_DEPARTURE > 4.8 then
STATS.FOUR_HOURS_IN_SYSTEM
:= STATS.FOUR_HOURS IN_SYSTEM + 1;

end if;

if SERVICE_QUEUE.LENGTH - 1 = @ then -- 1if gqueue
-- will be
-- empty
-- after tnis
-- departure

SERVICE_QUEUE.LENGTH := 92;
SERVICE QUEUE.IS_IDLE := TRUE;
STATS.NEXT_DEPARTURE := 1.0e33;
else
for INDEX in 1..SERVICE QUEUE.LENGTH - 1 loop
SERVICE QUEUE.ELEMENT (INDEX)
= SERVICE_QUEUE.ELEMENT(INDEX + 1):
end loop;

SERVICE_QUEUE.LENGTH := SERVICE_QUEUE.LENGTH - 1;
RAN (RANDOM_NUMBER) ;
SERVICE_TIME := MEAN_SERVICE_TIME
* (-LN_
(RANDOM_NUMBER .NUMBER) ) ;
STATS.NEXT DEPARTURE := STATS.CLOCK

+ SERVICE_TIME;
end if;
end GENERATE_DEPARTURE;

e - - P Am . - - —— D — —. D ———— - —— - — - ——— " — ——— -

procedure INITIALIZE

(STATS : in out
STATISTICS;
SERVICE_QUEUE : in out QUEUE;
MEAN__ INTER ARRIVAL TIME : in FLOAT;
RANDOM NUMBER in out
RANDOM _ NUMBER _RECORD) 1is
ARRIVAL_TIME : FLOAT;
begin .

STATS.REPETITION :
RANDOM NUMBER.DSEED

STATS.REPETITION + 1;
RANDOM_NUMBER.SEEDS
(STATS.REPETITION) ;
3;

RANDOM_NUMBER.COUNT
RAN (RANDOM_NUMBER) ;
ARRIVAL TIME

MEAN_INTER_ARRIVAL_ TIME

136




T
At atatanm

-r'_‘-‘ A AN AN et gRul g

P

A A Sail Nl P " At VR S A 20 e e A 4 o SAn 00 A\ i B A S i 0 B d S ee i e oo ag ol

* (-LN (
STATS.CLOCK :
STATS.TIME_LAST_EVENT
STATS.SERVER_BUSY_TIME
STATS.TOTAL TIME_IN_SYSTEM
STATS.TOTAL ARRIVALS
STATS.TOTAL_DEPARTURES
STATS.MAX_Q LENGTH
STATS.FOUR_HOURS_IN_SYSTEM
STATS .NEXT_ARRIVAL

5

L]
QSQ&Z

OM_NUMBER.NUMBER) ) ;

.
’
.
’
I
.
!
.
’
.
[
.
’

SSGSQQS@
L]

oot onu “

STATS CLOCK
+ ARRIVAL_TIME;

STATS .NEXT_DEPARTURE 1= 1.0e30;
SERVICE QUEUE.LENGTH = 8;
SERVICE QUEUE IS_IDLE t= TRUE;

end INITIALIZE;

D . - D - - —— — — — — — - —— —— - i ——— - — - —— — —— ——— W — W D " ——— —

procedure GENERATE REPORT

(STATS : in cut
STATISTICS;
SERVICE QUEUE : in out QUEUE;
MEAN_INTER_ARRIVAL _TIME : in FLOAT;
MEAN SERVICE TIME : in FLOAT;
RANDOM NUMBER : in out

RANDOM_NUMBER_RECORD) is
TEMP : FLOAT;
begin
NEW_LINE;
NEW_LINE;
PUT ("RANDOM NUMBER GENERATOR SEED");
PUT (RANDOM_NUMBER.SEEDS (STATS.REPETITION));
NEW_LINE;
PUT ("MEAN INTERARRIVAL TIME = ");
PUT (MEAN_INTER_ARRIVAL_TIME);
NEW_LINE;
PUT ("MEAN SERVICE TIME = ");
PUT (MEAN_SERVICE_TIME);
NEW_LINE;
NEW_LINE;
PUT ("PROPORTION OF TIME DOCK CREW IS BUSY = ");
TEMP := STATS.SERVER_BUSY_TIME / STATS.CLOCK;
PUT (TEMP);
NEW_LINE;
NEN_LINE;
PUT ("MAXIMUM LENGTH OF WAITING LINE = ");
PUT (STATS.MAX_Q LENGTH) ;
NEW_LINE;
NEW_LINE;
PUT ("AVERAGE TIME TO TRANSIT SYSTEM = ");
TEMP := STATS.TOTAL_TIME IN_SYSTEM
/ FLOAT(STATS.TOTAL_DEPARTURES) ;
PUT (TEMP);

137

P

PP ROr Y




ey WO YOOV VYT T NE ™

NEW_LINE;

NEW_LINE;
PUT ("PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS
1
=%);
TEMP := FLOAT (STATS.FOUR HOURS IN SYSTEM)

/ FLOAT (STATS.TOTAL DEPARTURES) ;
PUT (TEM?);
NEW_LINE;
NEW_LINE;
PUT ("SIMULATION RUN LENGTH = ");
PUT (STATS.CLOCK) ;
: PUT ("™ HOURS");
I NEW_LINE;
- NEW_LINE;
& PUT ("NUMBER OF TRUCKS UNLOADED = ");

PUT (STATS.TOTAL_DEPARTURES) ;
NEW_LINE;
NEW _LINE;
PUT ("NUMBER OF RANDOM NUMBERS USED = ");
PUT (RANDOM_ NUMBER.COUNT) ;
NEW_LINE;
NEW_LINE;
PUT ("AVERAGE NUMBER OF UNITS IN SYS. = ");
TEAP := STATS.TOTAL_TIME_IN_SYSTEM / STATS.CLOCK;
PUT (TEMP);
NEW_LINE;
NEW_LINE;
li PUT ("TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
{ ")s
3 PUT (STATS.TOTAL_TIME IN_SYSTEM) ;
NEW_LINE;
NEW_LINE;
PUT ("AVERAGE NUMBER OF ARRIVALS PER H2 = ");
TEMP := FLOAT (STATS.TOTAL_ARRIVALS) / STATS.CLOCK;
PUT (TEMP);
NEWN_LINE;
NEWN_LINE;
end GENERATE REPORT;

. erw

- - — - - — - — - ————— — — - D - - ——— i ———— — - —— ——— — —— — ————

b procedure RAN (RANDOM_NUMBER : in out
RANDOM_NUMBER_RECORD) 1is
type DIGITS_6 is digits 6;

{C tmpint : integer;
- tmpreal : DIGITS_6;
. TEMP : DIGITS_6;
2 SEED : DIGITS_6;
.
: begin
SEED := DIGITS_6 (RANDOM_NUMBER.DSEED) ;

138

--------




r' AR i R it e 2 (] . LS g .

tmpreal
tmpint
TEMP

if TEMP >=
tmpint
tnpreal
else
tmpreal
- end if;

if tmpreal
tmpreal

end if;

tmpreal :=

PSRN A sun ede Jah tonis sndh SH G sed o

SEED * 3,141592;
integer (tmpreal);
tmpreal - DIGITS_6 (tmpint);

2.5 then

= tmpint + 1;
= tmpreal - DIGITS_®6 (tmpint);

< 4.8 then
= -tmpreal;

2.0 * tmpreal;

RANDOM NUMBER.NUMBER := FLOAT (tmpreal);

RANDOM_NUMBER.DSEED :
RANDOM_NUMBER.COUNT :

end RAN;

= FLOAT (tmpreal):
= RANDOM_NUMBER.COUNT + 1;

end SIMULATION_ROUTINES;

P U R L B S C et - . . . P - - C et

P T T T A ST - « e L e el PR e e e et R
I VRN M Tt TR SR SR S N O . e e Y Ty R I P T SN T O .- D o T T
e T e B e e et S
POEIVLIF ST T SR SR S0 St Vs 0.0 S Sl P LY TP R Wy P U Y Y U AT DIV TILITNR UAT TP D DRy D PR R DA ‘e w e e e L )




—~vrvw

APPENDIX S

SOURCE LISTING
LIBRARY MAINTENANCE PROGRAM
ORIGINAL PASCAL VERSION

T

™

program liblist(input, output, libfile);

type chararr= array([l..208] of char;
libptr = “liblist;

liblist =
_ record
NEXT: 1libptr;
NAME: chararr;
AUTHOR: chararr;
CALLNO: 1integer;
* end; (*RECORDY*)

var FRONT,
BOOK: libptr;
INCALLNO,
INDX: integer;
SELECTION: char;
libfile: text;

e ane oo

procedure insert(BOOK: libptr);
var P,2: libptr;

begin (*insert¥*)
if FRONT = nil then
FRONT := BOOK
else

ChROES g am and

if FRONT” .CALLNO>BOOK” .CALLNO then
begin(*INSERT AT FRONT*)
BOOK" .NEXT := FRONT;
FRONT := BOOK
end

else
begin (*INSERT IN MIDDLE¥)
P := FRONT;
Q := FRONT;
while(P" .NEXT<>nil) and (P = Q) do
begin (*TRAVERSE?*)
P := P” ,NEXT;
if P".CALLNO>BOOK™ .CALLNO then
begin (*ATTACHY*)
Q" .NEXT := BOOK;

149

............
..........

LR T T S R AL A R

FRAP ISl AP T A UL L PN R

R SRR . Sl AT S ST U P U S G, P




BOOK” .NEXT := P
and
else
Q := P
end; (*TRAVERSEY*)
if (P".NEXT = nil) and
(P" .CALLNO<BOOK" .CALLNO) then

(*ATTACH AT END¥*)

P" .NEXT := BOOK

end (*INSERT IN MIDDLEY¥)

end; (*INSERTY)

procedure delete(CALLNO: integer);

var P,Q: libptr;
DELETED: boolean;

begin (*DELETE¥*)
DELETED := FALSE;
if FRONT = nil then
writeln('NOTHING TO DELETE.')
else
if FRONT".CALLNO = CALLNO then
begin (*DELETE FIRST ELEMENT*)
FRONT := FRONT" .NEXT;
DELETED := TRUE
end (*DELETE FIRST ELEMENTY)
else
begin (*SEARCH LIST¥)
P := FRONT;
Q := FRONT;
while (P".NEXT<>nil) and (P = Q) and
(P" .CALLNO<KCALLNO) and
(DELETED=FALSE) do
begin (*TRAVERSE and DELETEY*)
P := P" .NEXT;
if P".CALLNO = CALLNO then
begin (*DELETE BOOK*)
Q" .NEXT := P~ .NEXT;
DELETED := TRUE
end (*DELETE BOOK*)
else
Q =P
end; (*TRAVERSE and DELETEY)
if DELETED = FALSE then
writeln('NO SUCH BOOK');
writeln
end (*SEARCH LIST*)
end; (*DELETE*)

procedure readfile;

141

hAFEAR A S A G SN AUl U S Sl i adte abd '4‘.-._-.-_-—_',vv.v,,vr-—;v.-;r--‘




ST R R R TR TR e T e T e TR T N N N e T e T N W T T e T e W O W T W T Y T T W T W~ w— w — w

.......................

var INDX: integer;
BOOK: libptr;

begin (*readfile*)
reset(libfile);

while not e2of(libfile) do
begin (*READ BOOK¥*)
new (BOOK} ;
for INDX := 1 to 20 do
read(libfile, BOOK" .NAME[INDX]):
readln(libfile);
for INDX := 1 to 20 do
read(libfile, BOOK” .AUTHOR[INDX]);
readln(libfile);
readln(libfile, BOOK".CALLNO) ;
insert (BOOK)
end (*READ BOOK*)
end; (*readFILEY*)

procedure writefile;

var P: libptr;
INDX: 1integer;

begin (*writefile¥*)
rewrite(libfile);
P := FRONT;
while P<>nil do
begin (*write BOOK¥)
for INDX := 1 to 20 do
write(libfile, P" .NAME[INDX]);
writeln(libfile);
for INDX := 1 to 20 do
write(libfile, P".AUTHOR[INDX]);
writeln(libfile);
writeln(libfile, P".CALLNO);
P := P" .NEXT
end (*WRITE BOOKY*)
end; (*writefile*)

procedure viewfile;

var INDX: integer;
NAME, AUTHOR: chararr;
CALLNO: integer;

begin (*viewfile¥*)
reset(libfile);
while not eof(libfile) do
begin (*view libfile*)
for INDX := 1 to 20 do

142

e T e T e e e T e e e e e e T

..........................

....................
-------------------------




A e e " e e i B e M o Sl S SR it A e i WA b e dhates - Zhdhe fhens gtaen & faa A
r - . SR A SRR ANl e Rl S AN A A A A T i i -l S Banky | Bkl Saate Sane Saan T W Wy

begin (*loop*)
read(libfile,NAME[INDX]) ;
write (NAME[INDX]);
end;
readln(libfilza);
writeln;
for INDKX := 1 to 23 do
begin (*loop¥*)
read(libfile,AUTHOR[INDX]) ;
) write (AUTHOR[INDX]);
end;
readln(libfile);
writeln;
readln(libfile,CALLNOQ) ;
writeln (CALLNO) ;
end; (*view libfile¥*)
writeln;
writeln('END OF LIBRARY FILE');
end; (*viewfile¥)

begin (*liblist¥)
FRONT := nil;
readfile;
writeln ('WOULD YOU LIKE TO INSERT OR DELETE A BOOK OR
VIEW THE FILE?'):;
write ('TYPE I OR D OR V: ');
readln (SELECTION) ;
writeln;
while SELECTION<>'F' do
begin (*UPDATE LIST*)
if SELECTION = 'I' then
begin (*READ, INSERT BOOK*)
new (BOOK) ;
writeln('TYPE THE NAME OF THE 800K: ');
for INDX := 1 to 28 do
if not eoln then
read (BOOK"™ .NAME [ INDX])
else
BOOK " .NAME[INDX] := ' ';
readln;
writeln;
writeln('TYPE THE NAME OF THE AUTHOR:');
for INDX := 1 to 24 do
if not eoln then
read (BOOK” .AUTHOR[ INDX])
else
BOOK” .AUTHOR([INDX] := ' ';
readln;
writeln;
writeln ('TYPE THE CALL NUMBER OF THE

143




o Al o TGP e covn et ae adel Sl Sons SRS soh SES Sshh Samt MMie SN et AP A RS S asl Seme Syl e b T YTy T WY T TY Y

BOOK: ') ;
readln (BOOK".CALLNO);
writeln;
insert (BOOK) ;

end; (*READ, INSERT BOOK*)

if SELECTION = 'D' then
begin (*GET NUMBER, DELETE B80OO0K*)
write ('TYPE THE CALL NUMBER QOF THE BOOK:'):
rzadln (INCALLNO) ;
writeln;
delete (INCALLNO) ;
end; (*GET NUMBER, DELETE BOOK?*)

if SELECTION = 'V' then
pegin (*TO VIEW FILE¥*)
writefile;
viewfile;
writeln;
end; (*TO VIEW FILEY*)

write('TYPE I TO INSERT, D TO DELETE, OR V TO VIEW
FILE, OR F TO FINISH:');
readln (SELECTION) ;
writeln
end; (*UPDATE LI3T¥*)
aritafile;
writ:ln('LIBRARY FILE 1S NOW UPDATED') ;
writeln; writeln
end. (*liblist¥)

144

............................................
..........................................

.................

-
-------
........




o L R S S T R A e e B RS St B St il e
4 - . S W T T O T N T Y T L T T I VY W W W Tl VoW v Cwe e Ty

APPENDIX T

SOURCE LISTING
LIBRARY MAINTENANCE PROGRAM
ADA LINE-BY-LINE TRANSLATION
VADS COMPILER RELEASE V34.96

- - D = e ~mh T W D S D M D G Y T S R G —— o - o — - = =y . - = - = b - ——

~- LINE BY LIYE TRANSLATION OF THE LIBLIST PASCAL PROGRAM
~= INTO ADA.

D - - D - - - - — - - - - —— —— - - S - ——— - —— - - = - — -

- D - P s - D - - - My s — D — — - —r —— - — —— —— i — > —— - - —— - — - — - -

with text_io; use text_io;
procedure lib is

package int_io is new integer_io(integer);
use int_io;

vr—v—————

type chararr is array (integer range 1 .. 28) of
character;

type liblist;

type libptr is access liblist;

v

type liblist 1is
record
NEXT : libptr;
NAME : chararr;
AUTHOR chararr;
CALLNO integer;
end record;

——r—r—v

FRONT, BOOK : libptr;
INCALLNO : integer;
SELECTION : character;

LA Ash 40 ot o

libfile : text_io.file_type;

-

procedure insert (BOOK : libptr) is
P,Q : libptr;

begin

¢ 2 WV vrmwe - w w =

145




A i

e

B Al g
o e Ty
PP N

A P

Pall b St Sl Ak T S e g o ~

if FRONT = null then
FRONT := BOOK;

else

if FRONT.CALLNO > BOOK.CALLNO then
BOOK .NEXT := FRONT;
FRONT := BOOK;

else

P := FRONT;
Q := FRONT;
while (P.NEXT /= null) and (P = Q) loop
P := P.NEXT;
if P.CALLNO > BOOK.CALLNQ then
Q .NEXT := BOOK;
BOOK .NEXT := P;

else

Q := P;
end if;
end loop;
if ((P.NEXT = null) and (P.CALLNO < BOOK.CALLNO)) then
P.NEXT := BOOK;
end if;
end if;
end if;
end insert;

A D > W S = D = ——— - — - —— — - - -, —— - —— - — — - - ———— —

procedure delete (CALLNO : in INTEGER) is

P, Q : libptr;
DELETED : BOOLEAN := FALSE;

begin
if FRONT = null then
put ("NOTHING TO DELETE");
new_line;

else

if FRONT.CALLNO = CALLNO then
FRONT := FRONT.NEXT;
DELETED := TRUE;

else

146

--------------

. . ISR
..... st R N S R
e e N DAL I PSR R R PN N A P P S O - ~ - -
ittt I Y. IR SN U A - PRI T A TRV

. LI N
. .-t R T PRI S W
PR TR S TR R VIR DA TR T Dy D T



Tn“.t TeTeRes

e B A A s s T8 B g Bl e M AN e UL DA S e s W Sa iU o g e ey e " e
L. - oo R s T T e T g B A i

................

P := FRONT;
Q := FRONT;
while (P.NEXT /= null) and (P = Q) and
(P .CALLNO<KCALLNO) and (DELETED = FALSE) loop
P := P.NEXT;
if P.CALLNO = CALLNO then
Q.NEXT := P.NEXT;
DELETED := TRUE;

else

Q = P;
end if;
end loop;

if DELETED = FALSE then
put ("NO SUCH BOOK") ;
new_line;

end if;

end if;
end if;

end delete;

- — - D - — - - - P WD = . D T P S D G S G WD SN WD YD W e S S =D S D G W WD W SO W D . s

procedure readfile is
BOOK : libptr;
begin
reset(libfile);

while not END_OF_FILE(libfile) loop
BOOK := new liblist;
for I IN1 .. 29 loop
get (libfile, BOOK.NAME(I));
end loop;
skip_line(libfile);

for I inl1l .. 28 loop

get (libfile, BOOK.AUTHOR(I)):;
end loop;
skip_line(libfile);

gast (libfile, BOOK.CALLNO);
skip_line(libfile);

insert (BOOK) ;
end loop;

147




end readfile;

D - D - - - - —— — - — - — - — - ——— " —— —— . - . ——— - — - ——— -

procedures writefile is
P : libptr;
bagin

create(libfile, out_file,"libfile");
P := FRONT;
wnile (P /= null) 1loop
for I in 1l .. 284 loop
put(libfile, P.NAME(I)):
end loop;

new line(libfile);
for I in 1 .. 20 loop
put(libfile, P.AUTHOR(I));
end loop;
new_line(libfile);
put(liofile, P.CALLNO); new_line(libfile);
P := P.NEXT;
and looop;

close(libfile);
end writefile;

procedure view_libfile is
NAME : chararr;
AUTHOR : chararr;
CALLNO : integer;
begin
reset(libfile);
while not END_OF FILE(libfile) loop
for I in 1 .. 20 loop
get(libfile,NAME(I));
put (NAME(I));

end loop;
skip_line(libfile);

148

T TP W T E ey Lol g S ad . S st ahar- et ety

amdn bl bl BB 8o Bl Bl S

e
L
o
K
s ar




L o e

P

IR R S R A e 2 et A S S A A o A A bl A il A Aol B St S Sl it A S R

new_line;

for I in 1 .. 20 loop
get(libfile,AUTHOR(I));
put (AUTHOR(I) ) ;

end loop;

skip line(libfile);

new_line;

get(libfile,CALLND) ;
put (CALLNO) ;

skip _line(libfile);
new_line;

end loop;

naw_line;
put ("END OF LIBRARY FILE");
new_line;
new_line;

end view_libfile;

- —— — ————— . ——— - — D D - —— . — — D — . ——— - —— — —— ——— - - —— -

- - - D W - .y - ——— — —— - — T g — . —— —— — — — — — —— - =V T b - -

-- MAIN PROGRAM 30DY
begin

open(linfile, in_file,"libfile");
FRONT := null;
readfile;

put ("WOULD YOU LIKE TO INSERT OR DELETE A BOOK OR VIEW THE
FILE?"); new_line;

put ("TYPE I OR D OR V: ");

Jet (SELECTION) ;

skip line;

wnile SELECTION /= 'F' loop

if SELECTION = 'I' then
300K := new liblist;
puc ("TYPE THE NAME OF THE BOOK: ");
new_line;

for I in 1l .. 20 loop
if not END_OF_LINE then
get (BOOK.NAME(I));

else

149




v

T

L St i S~ Al Sl Jhh gy ¢ “711'11

BOOK.NAME(I) := ' ';
end if;
end loop;
new_line;
skip line;

put ("TYPE THE NAME OF THE AUTHOR: ");
new_line;
for T inl1 .. 20 loop
if not END_OF_LINE then
get (BOOK.AUTHOR(I)) ;

else

BOOK.AUTHOR(I) := ' ';
end if;
end loop;
new_line;

put ("TYPE THE CALLNO OF THE BOOK: ");
new_line;

get (BOOK.CALLNO) ;

new_line;

insert (BOOK) ;

elsif SELECTION = 'D' then
put ("TYPE THE CALL NUMBER OF THE BOOK:");
get (INCALLNO) ;
new_line;

delete (INCALLNO) ;
elsif SELECTION = 'V' then
close(libfile);
writefile;
open(libfile, in_file, "libfile");
view_libfile;
new_line;
end if;
put ("TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: ");
get (SELECTION) ;
new_line;
skip line;
end loop;
close(libfile);
writefile;
Put ("LIBRARY FILE IS NOW UPDATED");
new_line; new_line;
end l1lib;




vr—Vv—r

Dt Jun a0 2n as 4

T

vET Y TV YV

TTTVE YTV Y T

= — T T T T
.
[

APPENDIX U

SOURCE LISTING
LIBRARY MAINTENANCE MAIN PROGRAM
ADA REDESIGN
VADS COMPILER RELEASE V04.06

witn TEXT_IO; use TEXT_IO;
with LIB_LIST; wuse LIB_LIST;
procedure LIB_MAIN is
ACTION : CHARACTER;
LIB_FILE : LIB_IO.FILE_TYPE;
begin
LIB_IO.OPEN (FILE => LIB_FILE,
MODE => LIB IO.INOUT_FILE,
NAME => "1lib_file.dat");
NEW_LINE;
PUT ("LIBRARY MAINTENANCE PROGRAM") ;
NEW_LINE;

NEW_LINE;
loop
NEW_LINE;
PUT ("What do you want to do?"); NEW_LINE;
PUT (" 'I' = insert a book"); NEW_LINE;
PUT (" 'D' = delete a book"); NEW_LINE;
pygT (" 'P' = print library list"); NEW_LINE;
PUT (" 'Q' = quit"); NEW LINE;
GET (ACTION); -
exit when ACTION = 'Q';
case ACTION 1is
when 'I' => INSERT_BOOK (LIB_FILE);
when 'D' => DHELETE _BOOK (LIB_FILE);
when 'P' => PRINT_BOOK_LIST (LIB_FILE);
when others => PUT_LINE ("INVALID RESPONSE") ;

end case;
end loop;
LIB_IO.CLOSE (FILE => LIB_FILE);
exception
when NUMERIC_ERROR =>
LIB_IO.CLOSE (FILE => LIB_FILE);
PUT ("FILE CLOSED");
raise;
when others =>
LIB_I0.CLOSE (FILE => LIB_FILE);
PUT ("FILE CLOSED");
raise;
end LIB_MAIN;




jvtr‘.vl"jw’

. am
e
B .

APPENDIX V

SOURCE LISTING
LISRARY MAINTENANCE ROUTINES PACKAGE
ADA REDESIGN
VADS COMPILER RELEASE V@4.06

‘l

LA < N
PR

‘Rot e aus 2an e a4
v . . ]

witn DIRECT_IO;
with TEXT_IO; use TEXT_IO;
package LIB_LIST is

type LIBRARY BOOK is record

NEXT _BOOK  : POSITIVE;
TITLE ¢ STRING (l..20);
AJHOR : STRING (1..20);

CALL_NUMBER : POSITIVE;
end record;

package LIB_IO is new DIRECT_IO (ELEMENT_TYPE =>
LIBRARY_BOOK) ;

package INT_IO is new INTEGER_IO (POSITIVE);

use LIB_IO;

use INT_IO;

procedure INSERT_B800K (LIS_FILE : in LIB_IO.FILE_TYPE);

procedure DELETE_BOOK (LI3 FILE : in LIB_IO.FILE_TYPE);

procedure PRINT BOOK_LIST (LI8_FILE : in
LIB_IO.FILE_TYPE);

end LIB LIST;

D A D - - — - — ———— - —— - —— —— D —— . — —— - —— - Y - - - - —— - - -

——— —— - —— -~ ———— - — —_— — - = D D D A - ——— D - - = - = =

package body LIB_LIST is
procedure INSERT_BOOK (LIB_FILE : in LIB_IO.FILE_TYPE) is

NEW_BOOK : LISRARY_BOOK;
THIS_BOOK LIBRARY BOOK;

PREV_BOOK : LIBRARY_ BOOK;

PREV_BOOK_INDEX : LIB_IO,POSITIVE COUNT;
begin

NEW_LINE;

PUT ("Enter book title");

NEW_LINE;

SKIP_LINE;

for I in NEW_BOOK.TITLE'range loop

152




R B I W W T W T TPy

if not END_OF_LINE then
GET (NEW_BOOK.TITLE(I))
alse
NEW_BOOK.TITLE(I) T
end if;
end loop;
NEW_LINE;
PUT ("Enter author name");
NEW_LINE;
SKIP_LINE;
for I in NEW_BOOK.AUTHOR'range loop
if not END_OF_LINE then
GET (NEW_BOOK.AUTHOR(I));
else
NEN_BOOK.AUTHOR(I) = 't
end if;
end loop;
NEW_LINE;
PUT ("Enter call number"):
NEW LINE;
GET (NEW_BOOK.CALL_NUMBER) ;
NEW_LINE;
READ (FILE => LIB_FILE,
ITEM => THIS_BOOK,
FROM => 1);
if THIS_BOOK.NEXT_BOOK
NEW_BOOK . NEXT_BOOK
THIS_BOOK.NEXT_ BOOK

~e

POSITIVE'last then
POSITIVE'last;
POSITIVE(SIZE (LIB_FILE)

+ 1);

WRITE (FILE => LIB_FILE,

ITEM => NEW_BOOK,

TO =>

LIB_IO. POSITIVE COUNT(THIS BOOK .NEXT_ BOOK) ) ;
WRITE (FILE => LIB_ FILE,

ITEM => THIS _BOOK,

TO => 1);
else
PREV_BOOK_INDEX := 1;
PREV_BOOK := THIS_BOOK;
loop

READ (FILE => LIB_FILE,
ITEM => THIS_BOOK,
FROM =>
LIB_IO.POSITIVE_COUNT
(THIS_BOOK .NEXT_BOOK) ) ;
if THIS_BOOK.CALL_NUMBER > NEW_BOOK.CALL_i7"3ER

then
NEW_BOOK .NEXT_BOOK := PREV_BOOK.NEXT_BOOK;
PREV _BOOK. NEXT _BOOK :=POSITIVE(SIZE(LIB_FILE)

+ 1);
WRITE (FILE => LIB_FILE,
ITEM => PREV_BOOK,

153

T




LM A S S g

TO => PREV_BOOK_INDEX) ;
WRITE (FILE => LIB_FILE,
ITEM => NEW_BOOK,
TO =>

LIB_IO,POSITIVE_COUNT
(PREV_BOOK .NEXT_BOOK) ) ;
exit;
glse
if THIS_BOOK.NEXT_BOOK = POSITIVE'last then
NEN_BOOK.NEXT_BOOK := POSITIVE'last;
THIS_BOOK.NEXT_BOOK := POSITIVE(SIZE
(LIB_FILE) + 1);
WNRITEZ (FILE => LIB_FILE,
ITEM => THIS_BOOK,
TO => INDEX (LIB_FILE) -1);
WRITE (FILE => LIB_FILE,
ITEM => NEW_BOOK,
TO =>
LIB _IO.POSITIVE COUNT
(THIS_BOOK.NEXT_BOOK));

exit;
else
PREV_BOOK_INDEX := INDEX (LIB_FILE) - 1;
PREV_BOOK := THIS_BOOK;
end if;
end if;
end loop;

end if;
end INSERT_BOOK;

D - - - —— - - - S . . . - D P D - D S D D D D = = D - — - — o — —— - -

. - — - - - - — - - — - — ——— ———— — —————— - - - S — —— -

procedure DELETE BOOK (LIB_FILE : in LIB_IO.FILE_TYPE) is
DELETED_BOOK ¢+ LIBRARY BOOK;
THIS_BOOK : LIBRARY BOOK;

PREV_BOOK LIBRARY_ BOOK;

PREV_BOOK_INDEX : LIB_IO.POSITIVE_COCUNT;

BOOK_NOT_FOUND : 300LEAN := TRUE;
begin

NEW_LINE;

PUT ("Enter call number of book to be deleted.");
NEW _LINE;
GET (DELETED_BOOK.CALL_NUMBER);
READ (FILE => LIB_FILE,
ITEM => THIS BOOK,
FROM => 1); —
PREV_BOOK_INDEX := 1;
PREV_BOOK := THIS_BOOK;
while THIS BOOK.NEXT BOOK /= POSITIVE'last loop
READ (FILE => LIB_FILE,
ITEM => THIS_BOOK,
FROM => LI3_[O,POSITIVE_COUNT

154

.........................................................
..........................................




s W R S W W W WL T S e Lastan At gt Satt Bedy S drat i s She Sbe JAi WM SR A wil Sadh Aad Aok .1.,-;.‘-_‘1

(THIS_BOOK.NEXT_BOOK)) ;
if THIS_BOOK.CALL NUMBER = DELETED_BOOK.CALL_NUMBER

then
if THIS_BOOK.NEXT_BOOK = POSITIVE'last then
PREV_BOOK.NEXT BOOK := POSITIVE'last;
else
S PREV_BOOK.NEXT_BOOK := THIS_BOOK.NEXT_ BOOK;
i end if;
. WRITE (FILE => LIB_FILE,
- ITEM => PREV_BOOK,
TO => PREV_BOOK_INDEX) ;

b BOOK_NOT_FOUND := FALSE;
[ exit;
\ end if;
' PREV_BOOK_INDEX := INDEX (LIB_FILE) - 1;
' PREV_BOOK := THIS_BOOK;

end loop;

if BOOK_NOT_FOUND then
i NEW_LINE;
] PUT ("Book Not Found");

NEW_LINE;
end if;

end DELETE_BOOK;

procedure PRINT_BOOK_LIST (LIB_FILE : in
LIB_IO.FILE_TYPE) is
BOOK : LIBRARY BOOK;
begin
READ (FILE => LIB_FILE,
ITEM => BOOK,
FROM => 1);
while BOOK.NEXT_BOOK /= INTEGER'last loop
READ (FILE => LIB_FILE,
ITEM => BOOK,
FROM => LIB_IO.POSITIVE_COUNT
(BOOK .NEXT_BOOK) ) ;
NEW_LINE;
PUT (BOOK.CALL_ NUMBER) ;
PUT (" ");
PUT (BOOK.TITLE);
PUT (" by ");
PUT (BOOK.AUTHOR) ;
end loop;
NEW_LINE;
end PRINT_ BOOK_LIST;
end LIB_LIST;




C TR TR TN R T S e ——— - v T ——
Bl 8 —r—r w -
. Eal el aina - oy e MR oiih st an |

APPENDIX W

SOURCE LISTING
LIBRARY MAINTENANCE DATA FILE CREATION PROGRAM
ADA REDESIGN
VADS COMPILER RELEASE V@4.046

with LIB_LIST; use LIB_LIST;
procedure MAKE_FILE is
BOOK : LIBRARY_BOOK;
LIB_FILE : LIB_IO.FILE_TYPE; l
begin
LIB_IO.CREATE (FILE => LIB_FILE,
MODE => LIB IO.INOUT_FILE,
NAME => "1ib file.dat");
BOOK .NEXT_BOOK  := 2;
BOOK .AUTHOR "POINTS TO START OF "
BOOK.TITLE "CHAIN "
BOOK .CALL_NUMBER POSITIVE'last;
LIB IO.WRITE (FILE => LIB_FILE,
ITEM => BOOK,
TO => 1);
POSITIVE'last;
"TOLSTOY, COUNT LEO "
BOOK.TITLE "ANNA KARENINA "
BOOK .CALL_NUMBER 12;
LIB_IO.WRITE (FILE => LIB_FILE,
ITEM => BOOK,
TO => 2);
LIB_IO.CLOSE (FILE => LIB_FILE);
end MAKE_FILE;

e 00 et »
U | | 1}
- W

BOOK .NEXT_BOOK
BOOK . AUTHOR

s o8 08¢ o
U T ]
<. ~.

156




APPENDIX X

OUTPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM
FORTRAN 4 VERSION

Trapezoidal integration with end correction

1 4.44444

2 1.78535

4 2.13427

8§ 2.19111

16 2.19675

32 2.19719

04 2.19722

123 2.19723
Area = 2.19723

157

.......................




TN YT YRYY YUNTTWTNTT

APPENDIX Y

QUTPUT LISTING

TRAPEZOIDAL INTEGRATION PROGRAM
ADA LINE-BY-LINE TRANSLATION
TELESOFT-ADA COMPILER VERSION 1.5

Trapezoidal integration with end correction

1

2

4

8
186
32
64
128

Area

4,.4444446E+09
1.7953498E+00
2.1342740E+00
2.1911082E+30
2.1967544E+09
2.1971931E+49
2.,1972231E+92
2.1972255E+40

2.1972255E+80

158

Asate B st et A0 AR AR R A s A AT A aes toll ars aoh SRR AU it




..........................

APPENDIX 2

OUTPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM
ADA LINE-BY-LINE TRANSLATION USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V04.06

Trapezoidal integration with end correction

1 4.44444444E+00
2 1,78534979E+09
4 2.,13427396E+02
8 2.19110817E+4d89

16 2.19675417E+00
32 2.19719294E+00
64 2.19722256E+00
128 2.,19722445E+499

Area = 2.19722445E+00

159

.......................

..........................

.................................
................................



IR R S Ac i S A S g wa e o
: - 'Wrtv“,v,.."w?,vf_‘:ﬂ,;‘_.' -

APPENDIX AA

OUTPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM
ADA LINE-BY-LINE TRANSLATION USING SIX DIGIT PRECISION
VADS COMPILER RELEASE V34.06

R AR o ASEe Tt Y AR

Trapezoidal integration with end correction

a0 & O

4.44444E+00
1.73535E+099
2.13427E+00
2.19111E+09

16 2.19675E+00
32 2.19719E+82
64 2.19722E+00
128 2.19723E+00

Area = 2.,19723E+849

4‘fiv'_vvvvv‘r—vtvv77 B

160




| SRS S SR R S i At A T — Y T

|
E
; APPENDIX BB
|

OUTPUT LISTING
TRAPEZOIDAL INTEGRATION PROGRAM

—————ar

1
2
4
8
16
| 32
b 64
1 123

YTV

AREA = 2.

ADA REDESIGN USING DEFAULT FLOAT PRECISION
VADS COMPILER RELEASE V34.26

TRAPEZOIDAL INTEGRATION

4.44444444E+29
1.70534979E+449
2.13427396E+03
2.19110317E+30
2,19675417E+00
2.19719294E+4Y
2.19722256E+03
2.19722445E+39
19722445E+10

l6l

..............
.............................
.......

PEA A v areh o 2 W S il -/ SN Biraie il i et diar S S St duse diuts finte Rt gt S S dugt

™




APPENDIX CC

OUTPUT LIS TNG
TRAPEZOIDAL INTEGRATION PROGRAM
ADA REDESIGN USING SIX DIGIT PRECISION
VADS COMPILER RELEASE V04.06

TRAPEZOIDAL INTEGRATION
1l 4.44444E+09
2 1.78535E+33
4 2.13427E+090
8 2.19111E+@9
16 2.19675E+02
32 2.19719E+09
64 2.19722E+00
128 2.19723E+89
AREA = 2.19723E+04

162

¥




L o

Lo e e e e o an o L o o

vy v v vwamer

manie s S o0 o

APPENDIX DD

OUTPUT LISTING
TRUCK SIMULATION PROGRAM
FORTRAN 4 VERSION USING 3599 ELEMENT ARRAY

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 8.56700000d4+83

MEAN ARRIVAL TIME(MIAT) = 9.3333

MEAN SERVICE TIME (MSVT) = 9.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 8.73
MAXIAUM LENGTH OF WAITING LINE = 15
AVERAGE TIME TO TRANSIT SYS. 0.80 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM .41

SIMULATION RUN LENGTH 569.36 HOURS. .

NUMBER OF TRUCKS UNLOADED = 1580

NUMBER OF RANDOM NUMBERS USED = 3007

AVERAGE NUMBER OF UNITS IN SYS.= 2.370

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1207.228

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.9547

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.459400004+03
MEAN ARRIVAL TIME (MIAT) = 9.3333
MEAN SERVICE TIME (MSVT) = d.25090

163

......................................

............................

TYY T T YT YT YT

..................................

.....

U




A A it T vl p A S A o A S St e~ e s i S S e ae ate Shay Sate Sos o et B 8

PROPORTION OF TIME DOCK CREW IS BUSY = 8.73
MAXIMUM LENGTH OF WAITING LINE = 10
AVERAGE TIME TO TRANSIT SYS. 2.71 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 2.

SIMULATION RUN LENGTH 533.25 HOURS..

NUMBER OF TRUCKS UNLOADED = 1569

NUMBER OF RANDOM NUMBERS USED = 3034

AVERAGE NUMBER OF UNITS IN SY¥S.= 1.9385

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1958.522

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8167

TRUCK QUEUING PROBLEM:ANDEZRSON AND SWEENEY-SINGLE SERVER
QUEUE.,

DSEED = 0.561000004+03

MEAN ARRIVAL TIME(MIAT) = 9.3333

MEAN SERVICE TIME(MSVT) = B.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 0.72
MAXIMUM LENGTH OF WAITING LINE = 13
AVERAGE TIME TO TRANSIT SYS. 0.79 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM @.

SIMULATION RUN LENGTH 529.22 HOURS. .

NUMBER OF TRUCKS UNLOADED = 1500
NUMBER OF RANDOM NUMBERS USED = 3008
AVERAGE NUMBER OF UNITS IN SYS.= 2.253

164

R At e

B
.
,

Bl oo

An a s o

Ahadon

Bedhed &2

PRy S

dashadochei RN,

PR RPN TN WS




-

v T Lot e o o o

—

v, " T T T Y Y v v v - s v v YW oy oWV

M afar et s (ol e o il S aai- itk 2ive A (U oAtk Sk oo aat sy e

.

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1192.372
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER dR= 2.3457

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY~-SINGLE
SERVER QUEUE.

DSEED = 0.663000004+83

MEAN ARRIVAL TIME(MIAT) = 9.3333

MEAN SERVICE TIME(MSVT) = 0.2500
PROPORTION OF TIME DOCK CREW IS BUSY = g.72
MAXIMUM LENGTH OF WAITING LINE = 10
AVERAGE TIME TO TRANSIT SYS. 2.69 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.

SIMULATION RUN LENGTH 534.84 HOURS..

NUMBER OF TRUCKS UNLOADED = 1599

NUMBER OF RANDOM NUMBERS USED = 3804

AVZRAGE NUMBER OF UNITS IN SY¥S.= 1.937

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1035.763

(TRUCKS PER dR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8283

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER

QUEUE.
DSEED = 0.613000004+23
MEAN ARRIVAL TIME (MIAT) = 9.3333
MEAN SERVICE TIME(MSVT) = 2.2509

165

...........................

V.
.........
...........................




Ak Shate Jah Matls Segh ind Sad Sg Ao & 4 ‘r‘1

i PROPORTION OF TIME DOCK CREW IS BUSY = 3.74
h AAXIMUM LENGTH OF WAITING LINE = 19

p

I AVERAGE TIME TO TRANSIT SYS. 8.71 HOURS. .
b

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.

SIMULATION RUN LENGTH 53d.41 HOURS. .

NUMBER OF TRUCKS UNLOADED = 1509
i NUMBER OF RANDOM NUMBERS USED = 3032
: AVERAGE NUMBER OF UNITS IN SYS.= 1.996
b TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=  10858.433

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8299

TRUCK QUEUING PROBLEA:ANDERSON AND SWEENEY-SINGLE SERVER

QUEUE.
DSEED = 0.867039204+23
433N ARRIVAL TIME (MIAT) = 3.3333
MEAN SERVICE TIME(MSVT) = 2.2500
PROPORTION OF TIME DOCK CREW IS BU3Y = p.72
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME fO TRANSIT SYS. 9.70 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.

STMULATION RUN LENGTH 525.69 HOURS. .

NUMBER OF TRUCKS UNLOADED = 15049
NUMBER OF RANDOM NUMBERS USED = 3004
AVERAGE NUMBER JF UNITS IN SYS.= 1.996

166

..........




I S S S Rt T Bt i b bt o WA Seih sengh aend M S G & g fheen B amm e

N R R W T P P P P Wy

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1049.182
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8577

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER

QUEUE,
DSEED = 0.969000004+03
MEAN ARRIVAL TIME (MIAT) = 0.3333
MEAN SERVICE TIME (MSVT) = 2.2500
{
. PROPORTION OF TIME DOCK CREW IS BUSY = g.72
! MAXIMUM LENGTH OF WAITING LINE = 12
4
* AVERAGE TIME TO TRANSIT SYS. 0.80 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.040

SIMULATION RUN LENGTH 525.89 HOURS..

BE. -~ a0 ses un an e

NUMBER OF TRUCKS UNLOADED = 1509

NUMBER OF RANDOM NUMBERS USED = 3982

AVERAGE NUMBER OF UNITS IN SY¥S.= 2,239

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1198.781

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8542

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.107100004+04

MEAN ARRIVAL TIME (MIAT) = 9.3333

MEAN SERVICE TIME(MSVT) = d.2500
167




Padib i it Lt il BRI R SN Pl e e AN i S e i S ol A B S AR S S h et el dudh st aglh el W '_—‘

PROPORTION OF TIME DOCK CREW IS BUSY = 2.71
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. 2.69 HOURS. .

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.

SIMULATION RUN LENGTH 534.85 HOURS..

NUMBER OF TRUCKS UNLOADED = 1532

NUMBER OF RANDOM NUMBERS USED = 3092

AVERAGE NUMBER OF UNITS IN SYS.= 1.957

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1037.296

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8318

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE.

DSEED = 0.117300004+04

MEAN ARRIVAL TIME (MIAT) = 9.3333

AEAN SERVICE TIME(MSVT) = 2.2588
PROPORTION OF TIME DOCK CREW IS BUSY = g.72
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 0.31 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
3YSTEM @.

SIMULATION RUN LENGTH 531.99 HOURS. .

NUMBER OF TRUCKS UNLOADED = 1504
NUMBER OF RANDOM NUMBERS USED = 3004
AVERAGE NUMBER OF UNITS IN SYS.= 2.274

163




e

v

T

—

v

VT

Lot el amanhac Ine an o an

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1207.853
(TRUCKS PER dR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8282

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE SERVER

QUEUE.
DSEED = 0.271700004+04
MEAN ARRIVAL TIME (MIAT) = 3.3333
MEAN SERVICE TIME (MSVT) = g.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 9.72
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. .75 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4@.

SIMULATION RUN LENGTH 521.11 HOURS..

NUMBER OF TRUCKS UNLOADED = 1500
NUMBER OF RANDOM NUMBERS USED = 3011
AVERAGE NUMBER OF UNITS IN SYS.= 2.169

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1136.351
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8958

169

.....................................

..............................

...........




APPENDIX EE

OQUTPUT LISTING
TRUCK SIMULATION PROGRAM
FORTRAN 4 VERSION WITH 6509 ELEMENT ARRAY

TRUCK QUEUING PROSLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 9.567030204+83

MEAN ARRIVAL TIME(MIAT) = 0.3333
f MEAN SERVICE TIME(MSVT) = 0.2500

PROPORTION OF TIME DOCK CREW IS BUSY = .71

MAXIMUM LENGTH OF WAITING LINE = 15

AVERAGE TIME TO TRANSIT SYS. 9.76 HOURS..
% PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE

SYSTEM 4d.40

SIMULATION RUN LENGTH 1053.323 HOURS. .

NUMBER OF TRUCKS UNLOADED = 3000
1 NUMBER OF RANDOM NUMBERS USED = 6006
3 AVERAGE NUMBER OF UNITS IN SYS.= 2.174
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2289.684

(TRUCX5 PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2,8527

TRUCK QUEUING PROBLZM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.459000004+03
MEAN ARRIVAL TIME (MIAT) = 2.3333

173

r-“.\‘"‘rvv‘j‘:ﬁ'““—‘-’ RN SEEEAN A M Y e et e halil DA SN AN A S AN et i S At AR IR S aa i Atle Shat St Sni St Saad e B 2 L S Bt g g

S S
.........
' P




B A o e hd N OO A A N T st~ i B raattn PT— >

MEAN SERVICE TIME (MSVT) = 9.2509
PROPORTION OF TIME DOCK CREW IS BUSY = p.72
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. g.7@ HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.

SIMULATION RUN LENGTH 1876.16 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6485

AVERAGE NUMBER OF UNITS IN SY¥S.= 1.946

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2094 .408

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.7905

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SZRVER QUEUE.

DSEED = 2.561000004+933

MEAN ARRIVAL TIME(MIAT) = 8.3333

MEAN SERVICE TIME(MSVT) = 0.2509
PROPORTION OF TIME DOCK CREW IS BUSY = 9.70
MAXIMUM LENGTH OF WAITING LINE = 13
AVERAGE TIME TO TRANSIT SYS. 2.76 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
3YSTEM 3.

SIMULATION RUN LENGTH 1083.88 HOURS..
NUMBER OF TRUCKS UNLOADED = 3009

NUMBER OF RANDOM NUMBERS USED = 6005

171




AVERAGE NUMBER OF UNITS IN SYS.= 2.109

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(3)= 2286.446
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.7706

TRUCK QUEUING PROBLEM:ANUDARSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.66300000d4+03

MEAN ARRIVAL TIME(MIAT) = #.3333

MEAN SERVICE TIME(MSVT) = 0.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 4.72
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. 2.71 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.

SIMULATION RUN LENGTH 1068.28 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 69005

AVERAGE NUMBER OF UNITS IN SY¥S.= 1.995

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2131.000

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8111

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED 0.613000004+83

172

...................................................................
......................................

......................................

.........




LT o s W WO W T e o

MEAN ARRIVAL TIME(MIAT) 2.3333

T - v vy
'l

MEAN SERVICE TIME(MSVT) 0.2500
PROPORTION OF TIME DOCK CREW IS BUSY = p.72
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. 8.79 HOURS. .

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.

SIMULATION RUN LENGTH 1471.14 HOURS..

NUMBER OF TRUCKS UNLOADED = 3800

NUMBER OF RANDOM NUMBERS USED = 64392

AVERAGE NUMBER OF UNITS IN SYS.= 1.954

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2093.365

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8017

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.867000004+03

MEAN ARRIVAL TIME (MIAT) = 9.3333

MEAN SERVICE TIME(MSVT) = 0.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 2.70
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 0.71 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.

SIMULATION RUN LENGTH 1081.54 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

173




B ST AN e b i~ e e 0 CRRCIe SR e e M an A et s A Aee M itns ame At 8 e s AN fie i AL SR S 4w B G 40 on e s 2, |

......

NUMBER OF RANDOM NUMBERS USED = 6004
AVERAGE NUMBER OF UNITS IN S8YS.= 1.982
‘POTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2143.365

(IRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2,7757

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 0.9690003064+03

MEAN ARRIVAL TIME(MIAT) = 9.3333

MEAN SERVICE TIME(MSVT) = 9.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 9.79
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. a.77 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.44

SIMULATION RUN LENGTH 1072.07 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6305

AVERAGE NUMBER OF UNITS IN SYS.= 2,151

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2306.3840

(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8011

- TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SE]/VER QUEUE.




i

DSEED = 0.107100604+04

MEAN ARRIVAL TIME (MIAT) = 0.3333

MEAN SERVICE TIME(MSVT) = 8.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 0.70
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. .72 HOURS. .

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM d.

SIMULATION RUN LENGTH 10678.29 HOURS..

NUMBER OF TRUCKS UNLOADED = 3000
NUMBER OF RANDOM NUMBERS USED = 60499
: AJ2RAIE NUJMBER OF UNITS IN SYS.= 2.002
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2159.108

(TRUCKS PER HR)

y AVERAGE NUMBER OF ARRIVALS PER HR= 2.7887

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

L sk ae an an am e am ac

DSEED = 0.1173000084+04
MEAN ARRIVAL TIME (MIAT) = 9.3333

; MEAN SERVICE TIME(MSVT) = B.2509

i PROPORTION OF TIME DOCK CREW IS BUSY = .70
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 2.76 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.

SIMULATION RUN LENGTH 1082.48 HOURS. .

Cah a0 aan on an an g oy

NUMBER OF TRUCKS UNLOADED = 3009

VYT

......................................................................................




LI A A R P M S S el A i M S T 2 S o

(A e S e SRy

NUMBER OF RANDOM NUMBERS USED = 60006
AVERAGE NUMBER OF UNITS IN SY¥S.= 2.093

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2266.082
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.7751

TRUCK QUEUING PROBLEM:ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE.

DSEED = 2.2717239904+04

MEAN ARRIVAL TIME(MIAT) = 2.3333

MEAN SERVICE TIME(MSVT) = 2.2500
PROPORTION OF TIME DOCK CREW IS BUSY = 0.71
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT sYS. 2.76 HOURS..

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM #.

SIMULATION RUN LENGTH 1067.87 HOURS. .

NUMBER OF TRUCKS UNLOADED = 3839
NUMBER OF RANDOM NUMBERS USED = 5204
AVERAGE NUMBER OJFf UNITS IN SYS.= 2.122
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 2265.961
(TRUCKS PER HR)
AVERAGE NUMBER OF ARRIVALS PER HR= 2.8112
176

‘‘‘‘‘‘‘‘
......

T T




ame

P

P

T T '-~»-\---;--(-ﬁ--~'»'~""tii:!fffirjrrrf?‘??frr‘fﬁtﬁfﬁﬁWT*qvrv;*rv;*y*;v;vyf}tﬁ-yvvﬂsnﬁxxu:e:r;v;ftrtj
]
|
)

APPENDIX FF i
OUTPUT LISTING b
TRUCK SIMULATION PROGRAM i
ADA LINE-BY-LINE TRANSLATION WITH 3508 ELEMENT ARRAY ]
TELESOFT-ADA COMPILER VERSION 1.5 1
J
TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE SERVER ]
QUEUE ]
[
)
DSEED= 5.6700000E+82 !
MEAN ARRIVAL TIME (MIAT) = 3.3333334E-91 .
MEAN SERVICE TIME (MSVT) = 2.5000008E-01
PROPORTION OF TIME DOCK CREW IS BUSY = 7.3094196E-01
MAXIMUM LENGTH OF WAITING LINE = 15 ;
AVERAGE TIME TO TRANSIT SYS. 8.J482091E-31HOURS.
PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE ]
SYSTEM 6.6666669E-43 ‘
SIMULATION RUN LENGTH 5.0935635E+32HOURS. 4
NUMBER OF TRUCKS UNLOADED = 1508 ]
NUMBER OF RANDOM NUMBERS USED = 3047 i
AVERAGE NUMBER OF UNITS IN SYS.= 2.3701117E+82
TOTAL NUMBER OF TRUCK HOURS IN TH" SYSTEM(S)= 1.20872314E+83

(TRU 'KS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.9547093E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 4.5900041E+42
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME (MSVT)

3.3333334E-01
2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.,3167362E-91

177

................................................




P

Cananam e e e

A o n am aa o0 g

T =T T e T TR T T LR T T T TR e A R e N T Y T N N NN Y T ¥ T R T Y T T Y TIYL Y LN UTT T uUT L, TN S o -y wmo= . -y~

MAXIMUM LENGTH OF WAITING LINE = 10
AVERAGE TIME TO TRANSIT SYS. 7.0568180E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0004000E+00

SIMULATION RUN LENGTH 5.3324599E+32HOURS.

NUMBER OF TRUCKS UNLOADED = 1508

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 1.9850552E+04

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.8585227E+83
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2,8167114E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 5.6100001E+02
MEAN ARRIVAL TIME (MIAT) = 3.3333334E-91
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1636633E-01
MAXIMUM LENGTH OF WAITING LINE = 13
AVERAGE TIME TO TRANSIT SYS. 7.9491424E-@1HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.30923JJE+40

SIMULATION RUN LENGTH 5,.2921595E+@2HOURS.

NUMBER OF TRUCKS UNLOADED = 1549
NUMBER OF RANDOM NUMBERS USED = 3008
AVERAGE NUMBER OF UNITS IN S5YS.= 2.25390903E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.1923713E+23
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8457193E+04

178




TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.6300001E+02
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME (MSVT)

3.3333334E-01
2.5000000E-91

PROPORTION OF TIME DOCK CREW IS BUSY = 7,1621222E-01
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. 6.9850858E-21H0URS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0000090E+00

SIMULATION RUN LENGTH 5.3483600E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1549

NUMBER OF RANDOM NUMBERS USED = 39204

AVERAGE NUMBER OF UNITS IN SYS.= 1.9365986E+039

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.6357626E+03
(TRUCKS PER HdR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8083374E+09

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.13000081E+02
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME (MSVT)

3.3333334E-01
2.5000000E-01

PROPORTION OF TIME DOCK CREW 1S BUSY = 7.3744374E-01
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. 7.90562534E-91HOURS,

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0002000E+28

179

Coal el o & A e B oo

9

[ FEPRITVY W SR P PP ST ONNT |

PR STy v A S

PR W




d .
AD-A164 715 AN ASSESSMENT OF ADA’S SUITABILITY IN GENERAL
g PROORRHHING APPLICATIONS(U)> AIR FORI:E INST OF TECH
IGHT-PATTERSON AFB OH SCHOOL OF SYST
UNCLASSIFIED L D CAVITT ET AL. SEP F/G 9/2

PURPOSE 33




BN G AP AN SN

CRACE At S S A e gt ghe grel o B AN aril ot

b iz

el

e =

o =

I

E
rrFFEEEE

e
.
a——
rr
r
rr

==
2 L e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - &




t3phmend s JhAmc ey 4 r e ‘a2 W i Jioe ghen 4
. Aniet AR A A TR ek ad YR i i

SIMULATION RUN LENGTH 5.3441234E+02HOURS.

ndae o o

NUMBER OF TRUCKS UNLOADED = 1508
NUMBER OF RANDOM NUMBERS USED = 3932

AVERAGE NUMBER OF UNITS IN SYS.= 1.9955091E+20

S g o o s o

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.0584379E+03
(FRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER fIR= 2.8298738E+24
[
TRUCK QUEUING PROBLZ4: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 8.6700340E+02
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME (MSVT)

3.3333334E-91
2.5000000E-91

PROPORTION OF TIME DOCK CREW IS BUSY = 7.2286544E-31

MAKIMJUM LENGTH OF WAITING LINE = 19

AVERAGE TIME TO TRANSIT SYS. 6.9945353E-91HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTE4 4.32024999JE+00

SIMULATION RUN LENGTH 5.2559552E+02HOURS.
NUMBER OF TRUCKS UNLOADED = 1533

NUMBER OF RANDOM NUMBERS USED = 3904

AVERAGE NUMBER OF UNITS IN SYS.= 1.9961746E+03

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.0491893E+03
(TRUCKS PER HR)

AVERAGE NUMBER OJOF ARRIVALS PER HR= 2.8577108E+09

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 9.6899995E+02

182

.............................
..........................




A R T e T AT ual D v - e
e - CRRE TN "_‘.' N A S Y Y Y T Y T Y Y R e T T o -y

MEAN ARRIVAL TIME(MIAT) = 3.3333334E-01
MEAN SERVICE TIME(MSVT) = 2.5090000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.2336530E-01
MAXIMUM LENGTH JF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 7.9918785E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.43008404E-03

SIMULATION RUN LENGTH 5.2538S5S00E+d2HOURS.

NUM3ER OF TRUCKS UNLOADED = 15089

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN S5YS.= 2.2795519E+089

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.1987817E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8542361E+93

. TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.8709999E+33
MEAN ARRIVAL TIME (MIAT) = 3.3333334E-41
MEAN SERVICE TIME (MSVT) 2.5000000E-01

PROPORTION OF TIME DOCK CR:EW IS BUSY = 7.1392626E-91
MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. 5.9153063E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0000030E+09

SIMULATION RUN LENGTH 5.3004633E+32HOURS.
NUMBER OF TRUCKS UNLOADED = 1500
NUMBER OF RANDOM NUMBERS USED = 3082

AVERAGE NUMBER OF UNITS IN SYS.= 1.9569921E+99

181

------------




TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.8372959E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8318295E+09

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.1729999E+83
MEAN ARRIVAL TIME(MIAT) = 3.3333334E-91
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1630754E-081
MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 8.08523452E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 2.0000033E+949

SIMULATION RUN LENGTH 5.3198630E+32HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 2.,2743041E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.2078517E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.8281655E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 2.7170030E+03
MEAN ARRIVAL TIME (MIAT) = 3.3333334E-91
MEAN SERVICE TIME(MSVT) = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.2412753E-41
MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.5356698E-@1HOURS.

132

..................................
........................................................
..........................

et et
.....




PP I

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.3340030E+00

SIMULATION RUN LENGTH 5.2118718E+@2HOURS.

NUMBER OF TRUCKS UNLOADED = 1530

NUMBER OF RANDOM NUMBERS USED = 3011
AVERAGE NUMBER OF UNITS IN SYS.= 2.1691327E+80

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= 1.1393594E+03
(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS!PER HR= 2.8957579E+430

133 1

“w o " oa e e e e e e T T T e T s e e T T e T T T T
R N T R RSO SR T N VAt e e T T P O T T T e T L
k-‘. LRI I I I IS S A oI I B S D ST N o n g R Rl I S I Sl el S PO e ':"‘.;:;‘:' RO N

B U r TR A UL S LU P P PO SR S STt Sl SR S U




e e T T R T N N R R N N e Y L T YN, YT TR Y

T T PRASNE Jadh Bad Aol Ann s '—vv_T

APPENDIX GG

OUTPUT LISTING
TRUCK 3IAULATION PROGRAM
ADA LINE-BY-LINE TRANSLATION WITH 3509 ELSMENT ARRAY
VADS COMPILER RELEASE V34.06

TRUCK QUSUING PROBLEM: ANDERSON AND SWEENEY-SINGLE SERVER

QUEUE
b
k DSEED= 5.67000003E+02
}' MEAN ARRIVAL TIME (MIAT) = 3.33333333E-01

2.50000000E-01

MEAN SERVICE TIME (MSVT)

PROPORTION OF TIME DOCK CREW IS BU3Y = 7.33942538E-31

MAXIMUM LENGTH OF WAITING LINE = 15
AVERAGE TIME TO TRANSIT SYS. 8.04808941E-21HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 6.66666667E-93

SIMULATION RUN LENGTH 5.09356313E+d2HOURS.

: NUMBER OF TRUCKS UNLOADED = 1599
i NUMBER OF RaNDOM NUMBERS USED = 3037
AVERAGE NUMBER OF UNITS IN SYS.= 2.37007647E+22
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
[ 1.280721341E+03 (TRUCKS PER HR)
AVERAGE NUMBER OF ARRIVALS PER HR= 2.95470962E+09

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 4.59000000E+02
MEAN ARRIVAL TIME (MIAT)
AEAN SERVICE TIME(MSVT)

3.33333333E~01
2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.31673147E-01

184




MAXIMUM LENGTH OF WAITING LINE = 10
AVERAGE TIME TO TRANSIT SYS. 7.85674333E-31HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.000348003E+99

SIMULATION RUN LENGTH 5.33246154E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3094

AVERAGE NUMBER OF UNITS IN 35YS.= 1.98503511E+89
fOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.85351234E+43 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.81671342E+28

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 5.01000000E+02

MEAN ARRIVAL TIME (MIAT) = 3.33333333E-41

MEAN SERVICE TIME(MSVT) = 2.50000000E-D1
PROPORTION OF TIME DOCK CREW IS BUSY = 7.16366562E-31
MAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANSIT 5Y53. 7.94926046E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.00000002E+00

SIMULATION RUN LENGTH 5.29215984E+22HOURS.

NUMBER OF TRUCKS UNLOADED = 15a9

NUMBER OF RANDOM NUMBERS USED = 3028

AVERAGE NUMBER OF UNITS IN SY¥S.= 2.25306703E+04
fOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1,19235907E+33 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.84571904E+00

185

.....................................................................
....................................
.........................

N

M A oA N AR e e o o

.......................
---------

...........




TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY~SINGLE
SERVER QUEUE

v B i e i
A e
. P R R A

DSEED= 6.63000000E+22
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16212171E-01

Eagiony mooooe
" n LI ¢ LT,

MAXIMUM LENGTH OF WAITING LINE = 192

AVERAGE TIME TO TRANSIT SYS. 6.90580838E-01H0OURS.

PROPORTION OF TRUCKS TAIXING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.90309909E+030

SIMULATION RUN LENGTH 5.34835834E+02HOURS.

NUMBER OF TRUCKS UNLOADED = 1503

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 1.93657790E+290
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.33575126E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.80833838E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.13000009E+02
MEAN ARRIVAL TIME (MIAT) = 3.33333333E-01
MEAN SERVICE TIME (MSVT) = 2.500000008E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.37447834E-01
MAXIMUM LENGTH OF WAITING LINE = 19

AVERAGE TIME TO TRANSIT SYS. 7.05614819E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.0830003J0E+049




.........

SIMULATION RUN LENGTH 5.30412527E+82HOURS.

NUMBER OF TRUCKS UNLOADED = 1598

NUMBER OF RANDOM NUMBERS USED = 3022

AVERAGE NUMBER OF UNITS IN SY¥S,.= 1.99546763E+90
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.,85842103E+d3 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.82987283E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE Y

DSEED= 8.670000080E+932
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME (MSVT)

3.33333333E-91
2.50020000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.22066315E-01
MAXIMUM LENGTH OF WAITING LINE = 190
AVERAGE TIME TO TRANSIT SYS. 6.99445443E-91HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 3.000d0092E+08

SIMULATION RUN LENGTH 5.25595120E+32HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3004

AVERAGE NUMBER OF UNITS IN SYS.= 1.99615553E+4990
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.04916960E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.85771298E+020

TRUCK QUEUING PROBLEM: ANDERSON AND SWEE! ZY-SINGLE
SERVER QUEUE

DSEED= 9.69000000E+32

137

"""""""""""""""""""""""
-------------

M e S be Sl Al e Gne an S a0 n 2

L

............
oy




Py “, Lanan o o

2 - (KOOI  Masms

L ":jr ey

""'"—'"."

Dl A e A S e Jatias HhAe Ate BAn lAe Mbke Jben SNk A ah 4l B B4 b Ak et Jhame o,
. L S e N W T L o T T T Yy~ 1

MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME (MSVT)

3.33333333E-01
2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7,23365362E-01
MAXIMUM LENGTd OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 7.9918P875E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 4.00000009E-03

SIMULATION RUN LENGTH 5.258384911E+@2HOURS.

NUMBER OF TRUCKS UNLOADED = 1560

NUMBER OF RANDOM NUMBERS USED = 30892

AVERAGE NUMBER OF UNITS IN SYS.= 2.27953148E+084
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.19877131E+43 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.85423668E+04

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.071000600E+03
MEAN ARRIVAL TIME(MIAT)
MEAN SERVICE TIME (MSVT)

3.33333333E-41
2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.13927243E-01
MAXIMUM LENGTH OF WAITING LINE = 10
AVERAGE TIME TO TRANSIT SYS. 6.91520862E-081HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 3.00000000E+29

SIMULATION RUN LENGTH 5.30045391E+J2HOURS.

NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3002

AVERAGE NUMBER OF UNITS IN SYS.= 1.95696691E+00
138

................................................
...........................
......................................
..........................

- - -




....... AR M AR O Sl (R ASe ot Mas MR oS oA i i oe sha abe g o

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.03723129E+43 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.83133294E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.173000020E+83
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME(MSVT)

3.33333333E-01
2.53000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16307133E-01
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO [TRANGIT 3YS. 8.9522363JE-J41HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM J.040000903+40

SIMULATION RUN LENGTH 5.31436513E+d2HOURS.

NUMBER OF TRUCKS UNLOADED = 1508

NUMBER OF RANDOM NUMBERS USED = 3044

AVERAGE NUMBER OF UNITS IN SYS.= 2.27427247E+04
TOTAL WUMBER OF TRUCK HOURS IN [HE SYSTEM(S)=
1.23763544E+33 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.82816443E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERV:ZIR QUEUE

DSEED= 2.717300060E+33
4EAN ARRIVAL TIME (MIAT) = 3.33333333E-41
MEAN SERVICE TIME(MSVT) 2.50000029E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.241238190E-91

MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME TO TRANSIT SYS. 7.53558208E-01HOURS.

A a e o -




- -——w T T v v — e S s e A tbfiile Taie Jhge e Seruiiiiunil Al AR g LAl aanth e Ao el nen g T

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 9.023304303E+09

SIMULATION RUN LENGTH 5.211279093E+B82HOURS.

NJUMBER OF TRUCKS UNLOADZ] = 1540
NUMBER OF RANDOM NUMBERS USED = 3911
AVERAGE NUMBER OF UNITS IN SYS.= 2.15913752E+00
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
1.13833731E+43 (TRUCKS PER HR)

i AVERAGE NUMBER OF ARRIVALS PER HR= 2.89575794E+09

@a

},

3

g

[

».

9

b

8

[

b

E 1990

b

L_& — "\-.: ";‘.;—i" .:._';;..-::". . '-.-'-' "..'.."‘A"--’-}_A::".- ‘A ad ..l'..l: ‘;'.34._\ ALY s .n.NL.;--...Q;."‘.'. '-V'1V.'s:.."_..';'"A.‘.;A!-;.': i’*l";;"..':‘".v" i




L' PP PP

.t T . T Gt e e ™ . - S R P . R
o" o N - P P . - . e e LT e, e . . e e e e .
A el nandisna. CH RIS S T T . D v Jav SRy T T Y x -

APPENDIX dH

OUTPUT LISTING
TRUCK SIMULATION PROGRAM
ADA LINE-3Y-LINE TRANSLATION WITH 6544 ELEMENT ARRAY
VADS COMPILER RELEASE V34.06

TRUCK QUEUINS PROBLEM: ANDERSON AND SWEENEY-SINGLE SERVER
QUEUE

DSEED= 5.67000000E+32
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-921
MEAN SERVICE TIME (MSVT) 2.540040000E-31

1}

PROPORTION OF TIME DOCK CREW IS BUSY = 7.J38993J3E-41
MAXIMUM LENGTH OF WAITING LINE = 15
AVERAGE TIME TO TRANSIT SYS. 7.63218312E-O1HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 3.33333333E-43

SIMULATION RUN LENGTH 1.05303208E+@83HOURS.

NJIJMBER OF TRUCKS UNLOADED = 3000

NJMBER OF RANDOM NUMBERS USED = 6046

AVERAGE NUMBER OF UNITS IN SYS.= 2,17432353E+90
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.28963244E+43 (‘IRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.85271461E+073

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 4.59000000E+92
MAEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME(MSVT)

3,33333333E-41
2.50000000E-01

PROPORTION OF [TIME DICK CREW IS BUSY = 7.21658141E-91

191

.......

A

1.2 8 & 8.

Ak 8 S B S A 2

ia -

Uy W

PR S TP Ry

A2 8 o o -

s




e N TN W Wy v '.~'R“_ L Anil el ool ekt Sed Andl S Sl Al Aed Bad Ani el Seall ek S ) 'va

MAXIMUM LENGTH OF WAITING LINE = 19
AVERAGE TIME TO TRANSIT SYS. 6.98115739E-@1HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.90033904303E+4d92

SIMULATION RUN LENGTH 1.47615362E+33HOURS.

NUMBER OF TRUCKS UNLOADED = 308049
NUMBER OF RANDOM NUMBERS USED = 6805
AVERAGE NUMBER OF UNITS IN SYS.= 1.94614150E+040

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.93434722E+93 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.79049379E+00

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 5.610000008E+32
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE I'IME(MSVT)

3.33333333E-401
2.50000000E-01

PROPORTION JF TIME DOCK CREW IS BUSY = 7,01955668E-01
MAXIMUM LENGTH OF WAITING LINE = 13
AVERAGE TIME TO TRANSIT SYS. 7.62128362E-081HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 3.J3J)333JJE+30

SIMULATION RUN LENGTH 1.08388089E+Q3HOURS.

NUMBER OF TRUCKS UNLOADED = 34400
NUMBER OF RANDOM NUMBERS USED = 6005
AVERAGE NUMBER OF UNITS IN SY¥S.= 2.10944312E+20

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2,286338599E+03 {(TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.77859964E+98

192




L

M ad oo o0

e

KA

. R W W PPy

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.63000000F+02
MEAN ARRIVAL TIME(MIAL., = 3.33333333E~01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.23781229E-01
MAXIMUM LENGTH OF WAITING LINE = 10
AVERAGE TIME TO TRANSIT SYS. 7.10316696E-@1HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 2.00003303E+090

SIMULATION RUN LENGTH 1.06827350E+@3HOURS.

NUMBER OF TRUCKS UNLOADED = 3000

NUMBER OF RANDOM NUMBERS USED = 6085

AVERAGE NUMBER OF UNITS IN SYS.= 1.99476878E+80
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.13095009E+83 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.81107787E+89

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 6.13000000E+82
MEAN ARRIVAL TIME(MIAT) = 3.33333333e-01
MEAN SERVICE TIME(MSVT) = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.24916698E-01
MAXIMUM LENGTH OF WAITING LINE = 19

AVERAGE TIME TO TRANSIT SYS. 6.97767128E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00000000E+@0

RMSEA A A B D g 2r0 o4 gea ob@ SOh san ne sae iec

TR

q




AR A NSNS AT AR Tt o Tt Ji A A Stk 4 MBSt an 2 aua e oo 4 — e e e e o s o e

SIMULATION RUN LENGTH 1.47114171E+43HOURS.

NUMBER OF TRUCKS UNLOADED = 3009

NUMBER OF RANDOM NUMBERS USED = 6002

AVERAGE NUMB3ER OF UNITS IN SYS.= 1.95427116E+09
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.99330135E+03 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2,80163344+09

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

PUSER TI

DSEED= 3.67300000E+02
MEAN ARRIVAL TIME(MIAT)
MEAN SERVICE TIME(MSVT)

3.33333333E-01
2.50000004E-01

PRIPIRTION OF TIME DOCK CREW IS BUSY = 7.J1069610E-01
1A4AIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 7.14437325E-81HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 3.00000039:+390

SIMULATION RUN LENGTH 1.08154439E+33HOURS.

NUMBER OF TRUCKS UNLOADED = 3009

NUMBER OF RANDOM NUMBERS USED = 0304

AVERAGE NUMBER OF UNITS IN SYS.= 1.98171425E+92 ;
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= ﬂ
2.14331192E+43 (TRUCKS PER HR) :
AVERAGE NUMBER OF ARRIVALS PER HR= 2.775669247E+00 i

TRUCK QUEUING PROBLZM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 9.6900000JE+82

194




—Po——

3.33333333E~-01
2.50000090E-01

MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME(MSVT)

PROPORTION OF TIME DOCK CREW IS BUSY = 7.84902495E-41
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 7.68772379E-21HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 2.00000090E-23

SIMULATION RUN LENGTH 1.87287391E+33HOURS.

NUMBER OF TRUCKS UNLOADED = 3249

NUMBER OF RANDOM NUMBERS USED = 6005

AVERAGE NUMBER OF UNITS IN SYS.= 2.15126832E+079
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.30631864E+93 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.80111284E+09

fRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY~-SINGLE
SERVER QUEUE - W ——C__ W

DSEED= 1.07100009E+03
MEAN ARRIVAL TIME (MIAT)
MEAN SERVICE TIME (MSVT)

3.33333333E-01
2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.33983724E-81
MAXIMUM LENGTH OF WAITING LINE = 12
AVERAGE TIME TO TRANSIT SYS. 7.19684274E-01HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 2.90000000E+00

SIMULATION RUN LENGTH 1.97828782E+83HOURS.

NUMBER OF TRUCKS UNLOADED = 30089
NUMBER OF RANDOM NUMBERS USED = 6009
AVERAGE NUMBER OF UNITS IN SYS.= 2.080229733E+00

195

SNSRI TS




B T P T W W P TV W vy

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=
2.15905282E+23 (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.78863030E+09

TRUCK QUEUING PROBLEM: ANDERSON AND SWEENEY-SINGLE
SERVER QUEUE

DSEED= 1.17300000E+03
AEAN ARRIVAL TIME (MIAT) = 3.33333333E-21
MEAN SERVICE TIME(MSVT) = 2.50000000E-D1

P -

PROPORTION OF TIME DOCK CREW IS BUSY = 6.99513375E-81

MAXIMUM LENGTH OF WAITING LINE = 12

Sl il NS

AVERAGE TIME TO TRANSIT SYS. 7.55341635E-91HOURS.

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00020000E+09

SIMULATION RUN LENGTH 1.08247663E+83HOURS.

]
o
NUMBER OF TRUCKS UNLOADED = 3000 1
NUMBER OF RANDOM NUMBERS USED = 6336 H
AVERAGE NUMBER OF UNITS IN SYS.= 2.09337038E+00 ]
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)= ]
2.26602506E£+03 (TRUCKS PER HR) q
AVERAGE NUMBER OF ARRIVALS PER HR= 2.77511766E+00
TRUCK QUEUING PROBLEM: ANDER3SON AND SWEENEY-SINGLE
SERVER QUEUE ‘
DSEED= 2.71700000E+93
MEAN ARRIVAL TIME(MIAT) = 3.33333333E-01

2.50000000E-91

MEAN SERVICE TIME(MSVT)
PROPORTION OF TIME DOCK CREW IS BUSY = 7.10936320E-01
MAXIMUM LENGTH OF WAITING LINE = 12

AVERAGE TIME [O TRANSIT SYS. 7.55301701E-01HQURS.

196




PSR A A D Wi SN AT R dT R A RL T W TR R TR TN R we e e g e e N ikl el Nhadh Shalt santh Sudhes Lineshans 4 Al Sy B8 § Arik ey §

-----------

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS.. IN THE
SYSTEM 0.00300023E+00

SIMULATION RUN LENGTH 1.06786648E+d3HOURS.

NUMBER OF TRUCKS UNLOADED = 34240

NUMBER OF RANDOM NUMBERS USED = 6044

AVERAGE NUMBER OF UNITS IN SYS.=  2,12189927E+82 |
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S)=

2.26598510E+83  (TRUCKS PER HR)

AVERAGE NUMBER OF ARRIVALS PER HR= 2.81121287E+00

197




............

APPENDIX II
OUTPUT LISTING
TRUCK SIMULATION PROGRAM

ADA REDESIGN
TELESOFT-ADA COMPILER VERSION 1.5

RANDOM NUMBER GENERATOR SEED 5.6700800E+02

MEAN INTERARRIVAL TIME = 3.3333334E-01

MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.3094196E-01
MAXIMUM LENGTH OF WAITING LINE = 16

AVERAGE TIME TO TRANSIT SYSTEM = 3.0482091E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS = 6.6666669E~
83

SIMULATION RUN LENGTH = 5.08935635E+82 HOURS
NUMBER OF TRUCKS UNLOADED = 1589

NUMBER OF RANDOM NUMBERS USED = 3006

AVERAGE NUMBER OF UNITS IN SYS. = 2,3701117E+89

FOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.2072314E+93

AVERAGE NUMBER OF ARRIVALS PER HR = 2.9527462E+00

RANDOM NUMBER GENERATOR SEED 4.5900001E+02

MEAN INTERARRIVAL TIME = 3,3333334E-041

AEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.3167362E-01
MAXIMUM LENGTH OF WAITING LINE = 11

AVERAGE TIME TO TRANSIT SYSTEM = 7.0568183E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
0.0000000E+30

SIMULATION RUN LENGTH = 5,3324599E+02 HOURS

198

......................................................................
...................................
............




NUMBER OF TRUCKS UNLOADED = 1509
NUMBER OF RANDOM NUMBERS USED = 3403
AVERAGE NUMBER OF UNITS IN SYS. = 1.985@0552E+43

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(3) =
1.8585227E+83

AVERAGE NUMBER OF ARRIVALS PER HR = 2,8148360E+00

RANDOM NUMBER GENERATOR SEED 5.6124331E+32

MEAN INTERARRIVAL TIME = 3.3333334E-01

MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1636633E-01

14

MAXIMUM LENGTH OF WAITING LINE

AVERAGE TIME TO TRANSIT SYSTEM 7.9491424E-01

PROPORTION JF TRUCKS TAKING FOUR OR MORE HOURS =
0.0000000E+00

SIMULATION RUN LENGTH = 5.2921595E+02 HOURS
NUMBER OF TRUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3807

AVERAGE NUMBER OF UNITS IN SYS., = 2.2530903E+03

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.1923713E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8438290E+030

RANDOM NUMBER GENERATOR SEED 6.6300001E+02
MEAN INTERARRIVAL TIME = 3.3333334g-41
MEAN SERVICE TIME = 2,5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.,1621222E-01

MAXIMUM LENGTH OF WAITING LINE 11

AVERAGE TIME TO TRANSIT SYSTEM 6.9050850E-01

199




..... e g S W W W T g T g T W T T ey s Dol MRttt Bt e B EA A A0 St B Al Sveng .,.-v*‘

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
0.J403000E+29

SIMULATION RUN LENGTH = 5.3433600E+82 HOURS

NJIM3ER OF [TRUCKS UNLOADED = 1590
NUMBER OF RANDOM NUMBERS USED = 3943
AVERAGE NUMBER OF UNITS IN SYS., = 1,9365986E+09

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
i 1.93575262+33

_ AVERAGE NUMBER OF ARRIVALS PER HR = 2.8064678E+00

RANDOM NUMBER GENERATOR SEED 5.1300391E+02
MEAN INTERARRIVAL TIME = 3.3333334E-41
MEAN SERVICE TIME = 2.5900090E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.3744874E-01

MAXIMUM LENGTH OF WAITING LINE 11

AVERAGE TIME TO TRANSIT SYSTEM

7.0562534E-921

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
2.0000000E+20

SIMULATION RUN LENGTH = 5.,3041234E+02 HOURS
NUMBER OF TRUCKS UNLOADED = 1593

NUMBER OF RANDOM NUMBERS USED = 3431

AVERAGE NUMBER OF UNITS IN SYS, = 1,9955931E+23J

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.8584379E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2,8279884E+02

RANDOM NUMBER GENERATOR SEED 8.67004d0E+02
MEAN INTERARRIVAL TIME = 3.3333334E-91
MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY 7.2206544E-01

200

LI



LT TnpTT——

11

MAXIMUM LENGTH OF WAITING LINE

o 2

6.9945359E-01

AVERAGE TIME TO TRANSIT SYSTEM

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS = ]
0.0000002E+00 .

SIMULATION RUN LENGTH = 5.2559552E+82 HOURS

SR bt s

NUMBER OF TRUCKS UNLOADED = 1509
NUMBER OF RANDOM NUMBERS USED = 3003
AVERAGE NUYMBER OF UNITS IN SY¥S. = 1.9961746E+040

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.0491833E+03

i A

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8558082E+00

RANDOM NUMBER GENERATOR SEED 9.6899995E+02
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME = 2,530000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7,2336530E-41

13
7.9918785E-081

MAXIMUM LENGTH OF WAITING LINE
AVERAGE TIME TO TRANSIT SYSTEM

PROPORTION OF TRUCKS TAKING FOUR OR MORE HQURS = 4.0000000E-
23

SIMULATION RUN LENGTH = 5,2538500E+32 HOURS

NUMBER OF TRUCKS UNLOADED = 15909
NUMBER OF RANDOM NUMBERS USED = 3001
AVERAGE NUMBER OF UNITS IN SYS. = 2,2795510E+090

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.1987817E+93 H

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8523344E+08

RANDOM NUMBER GENERATOR SEED 1.8709999E+d3
MEAN INTERARRIVAL TIME = 3,3333334E-01

201




eI A M e S SRS S Aae St Shtin Nt Sl Shaiatiiait P . T — LB i et gt S Mg S inan e g i

MEAN SERVICE TIME = 2.5000000E-901
PROPORTION OF TIME DOCK CREW IS BUSY = 7.1392626E-~91

MAXIMUM LENGTH OF WAITING LINE 11

AVERAGE TIME TO TRANSIT SYSTEM 6.9153060E-91

[}

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
0.0000002E+00

SIMULATION RUN LENGTH = 5.3004603E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1590
NUM3ER OF RANDOM NUMBERS USED = 3001
AVERAGE NUMBER OF UNITS IN SYS. = 1.9569921E+4d4

POTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.0372959E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2,8299429E+02

RANDOM NUMBSR GENERATOR SEED 1.1729999E+03
MEAN INTERARRIVAL TIME = 3.3333334E-01
MEAN SERVICE TIME = 2.5000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.1630754E-J1

MAXIMUM LENGTH OF WAITING LINE 13

AVERAGE TIME TO TRANSIT SYSTEM 8.8523452E-91

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
0.0000000E+32

SIMULATION RUN LENGTH = 5.3188630E+82 HOURS

NUMBER OF TRUCKS UNLOADED = 1509
NUMBER OF RANDOM NUMBERS USED = 39033
AVERAGE NUMBER OF UNITS IN SYS. = 2.2743841E+04

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.2078517E+83

AVERAGE NUMBER OF ARRIVALS PER HR = 2.8262827E+09

202

..................................................
................................................




A i St s aasl SLase o B G -y = ~wy
r 3 e e -y MM AA Sns 2 dh Boh ane o T Palll e M- e p,

RANDOM NUMBER GENERATOR SEED 2.7170000E+03
MEAN INTERARRIVAL TIME = 3.3333334g-01
MEAN SERVICE TIME = 2,.5000000E-41

Sl Bk p Ll o ol B m_a_ s

PROPORTION OF TTIME DOCK CREW IS BUSY = 7.2412753E-81
MAXIMUM LENGTH OF WAITING LINE = 13
AVERAGE TIME TO TRANSIT SYSTEM = 7.5356698E-01 ?

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
B.9000003E+20

SIMULATION RUN LENGTH = 5.2110719E+862 HOURS

NUMBER OF TRUCKS UNLOADED = 1598

NUMBER OF RANDOM NUMBERS USED = 30140

Bk loal &

AVERAGE NUMBER OF UNITS IN SYS, = 2,1691327E+d3

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) = 1
1.1333524E+43 .

AVERAGE NUMBER OF ARRIVALS PER HR = 2,8938383E+00

203




B W W W W W e KISk e el el ol as e M s g e e o ~ PO AT o I

APPENDIX JJ

OUTPUT LISTING
TRUCK SIMULATION PROGRAM
ADA REDE3IGN
VADS COMPILER RELEASE V04,46

RANDOM NUMBER GENERATOR SEED 5.57J9003JE+22
MEAN INTERARRIVAL TIME = 3.33333333E-21
MEAN SERVICE TIME = 2,53099JJ33E-31

PROPORTION OF TIME DOCK CREW IS BUSY = 7.38942533E-21

MAXIMUM LENGTH OF WAITING LINE 19
AVERAGE TIME TO TRANSIT SYST&EM = d.94323941E-01

PROPORTION OF TRUCKS [AKING FOUR OR MORE HOURS =
6.66666667E-23

SIMULATION RUN LENGTH = 5.09356313E+32 HOURS

NUMBER OF TRUCKS UNLOADZD = 13449
NUMBER OF RANDOM NUMBERS USED = 34356
AVERAGE NUMBER OF UNITS IN SY3. = 2.37087647E+dJ9

TOTAL NUMBER OF TRUCK HOURS [N PHE SYSTEM(S) =
1.20721341E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2,95274036E+0Q9

RANDOM NUMBER GENERATOR SEED 4.59409J33E+82

MEAN INTERARRIVAL TIME = 3,33333333E-41
12AN SERVICE TIME = 2.500002009E-91
% ?RIPORTION OF TIME DOCK CREW IS BUSY = 7.31673147E-21

MAXIMUM LZNGTH OF WAITING LINE 11

7.05674893E-41

AVERAGE TIME TO [RANSIT SYSTEM

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
d.00002009E+VJ

204

9




-r—w

T TENE Y

A A S . A s i R oohan s odlan ol 4 - e SRengh Bndh sanie b Sagn Shadh Ao ERoad
- DA AL AL AAR SAL il ulle i s - aadhan Padia St S e s Sat il St S/ Bavh Sadh Jacn Jgn Sagh Mol Ay S a0kt 3

SIMULATION RUN LENGTH = 5.33246154E+92 HOURS
NJM3ZR OF TRUCKS UNLOADED = 1599

NJM3IR OF RANDOM NUMBERS USED = 3083

AVERAGE NUMBER OF UNITS I 5YS. = 1.98503511E+4d4
TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
L,053851234E+33

AJEZRAGZ NUMBER OF ARRIVALS PER HR = 2.81433512E+340

RANDOM NUMBER GENERATOR SEED 5.61004233E+02

MEAN INTERARRIVAL TIME = 3.33333333E-31
MEAN SERVICE TIME = 2,539800903:8-01
PROPORTION OF TIME DOCK CREW IS BUSY = 7.16366562E-01

14

MAXIMUM LENGTH OF WAITING LINE

2]

7.94906046E-91

AVERAGE TIMZ 'O [TRANSIT SY3TEM

PROPORTION OJF TRJCKAS TAKING FOUR OR MORE HOURS =
J.Jdd00020E+DD

SIMULATION RUN LENGTH = 5.29215984E+32 HOURS

NUMBER OF TRUCKS UNLOADED = 1593
NUMBER OF RANDOM NUMBERS USED = 3237
AVERAGE NUMBER OF UNITS IN SYS. = 2.253J6700E+39

TOTAL NUMBER OF [RUCK HOURS IN THE SYSTEM(S) =
1.19235987E+93

AVERAGE NUMBER OF ARRIVALS PER HR = 2.84332945E+00

RANDOM NUMBER GENERATOR SEED 6.06300d009E+d2

AEAN INTERARRIVAL TIME = 3.33333333E-41

AEAN SERVICE TIME = 2.5004J900E-9d1

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16212171E-01
MAXIMIM LENGTd OF WAITING LINE = 11

205

T T T YT




S i At ot s e e e e T T P e —

T

AVERAGE TIME TO TRANSIT SYSTEM = 6.90500838E-91

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
0.00000000E+00

SIMULATION RUN LENGTH = 5.34835834E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 15049

NUMBER OF RANDOM NUMBERS USED = 3083 )
AVERAGE NUMBER OF UNITS IN SYS. = 1.93657790E+09

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.93575126E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.80646865E+30

RANDOM NUMBER GENERATOR SEED 6.13000000E+02
MEAN INTERARRIVAL TIME = 3.33333333E-91
MEAN SERVICE TIME = 2.500030306E~01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.37447834E-01

MAXIMUM LENGTH OF WAITING LINE 11

7.05614019E-01

AVERAGE TIME TO TRANSIT SYSTEM

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
Jd.200000030E+80

SIMULATION RUN LENGTH = 5.30412527E+82 HOURS
NUMBER OF TRUCKS UNLOADED = 1589

NUMBER OF RANDOM NUMBERS USED = 3001
AVERAGE NUMBER OF UNITS IN SYS. = 1,99546763E+00

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.05842193E+83

AVERAGE NUMBER OF ARRIVALS PER HR = 2,32793751E+d0

RANDOM NUMBER GENERATOR SEED 8.67009000E+92
MEAN INTERARRIVAL TIME = 3,33333333E-01
MEAN SERVICE TIME = 2.50000000E-01

206

.............................................................
........................................................................................
........




PROPORTION OF TIME DOCK CREW IS BUSY = 7.22066315E-01

MAXIMUM LENGTH OF WAITING LINE 11

AVERAGE TIME TO TRANSIT SYSTEM 6.99446403E-91

PROPORTION OF TRUCKS TAKING FIJR OR MORE HOURS =
0.00000000E+29

SIMULATION RUN LENGTH = 5.25595120E+02 HOURS

NUMBER OF TRUCKS UNLOADED = 1589
NUMBER OF RANDOM NUMBERS USED = 3003
AVERAGE NUMBER OF UNITS IN SYS, = 1.99615553E+44

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.04916960E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2.,85581038E+00

RANDOM NUMBER GENERATOR SEED 9.69020003E+@2
MEAN INTERARRIVAL TIME = 3.33333333E-41
MEAN SERVICE TIME = 2.50000009E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.23365362E-01

MAXIMUM LENGTt OF WAITING LINE 13

AVERAGE TIME TO TRANSIT SYSTEM 7.99183875E-01

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
4,00000000E-03

SIMULATION RUN LENGTH = 5.258384911E+32 HOURS

NUMBER OF I'RUCKS UNLOADED = 1500

NUMBER OF RANDOM NUMBERS USED = 3001

AVERAGE NUMBER OF UNITS IN SYS. = 2.27953168E+40

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) = ‘
1.19877131E+33

AVERAGE NUMBER OF ARRIVALS PER HR = 2.85233512E+24

207

SO SPW R SO e




e T R TR RT TN E T AIRTROTI T WL WeVe ey e e N e wow e ey AL A iAlh v aovi SebE salii eicisbls Sl et ~nfi smat o auiie- g
; RN LA N W e g D . A R - . - -

’
’
)
>
)

n s o

T

s o e o ae g s o0 on o e an o oy

RANDOM NUMBER GENERATOR SEED 1.07100000E+23
MEAN INTERARRIVAL TIME = 3,33333333E-41
MEAN SERVICE TIME = 2.50000000E-01

PROPIRTION Of TIMS& DOCK CRaW IS BU3SY = 7.13927243E-01

MAXIMUM LENGTH OF WAITING LINE 11

6.91523862E-01

AVERAGE TIME TO TRANSIT SYSTEM

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
d.3803d0839E+43

SIMULATION RUN LENGTH = 5.30045391E+82 HOURS

NUMBER OF TRUCKS UNLOADED = 1590
NUMBER Of RANDOM NUMBERS USED = 3441
AVERAGE NUMBER OF UNITS IN SYS. = 1.956933591E+20

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.33723129E+03

AVERAGE NUMBER OF ARRIVALS PER HR = 2,82994631E+040
RANDOM NUMBER GENERATOR SEED 1.17332033E+33

MEAN INTERARRIVAL TIME = 3,33333333E-41

MEAN SERVICE TIME = 2.50000002E-81

PROPORTION OF TIME DOCK CREW IS BUSY = 7.16307133E-01

MAXIMUM LENGTH OF WAITING LINE 13

AVERAGE TIME TO TRANSIT SYSTEM 8.05223630E-21

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =
2.00000000E+20

SIMULATION RUN LENGTH = 5,31086518E+32 HOURS
NUMBER OF TRUCKS UNLOADED = 1509

NUMBER OF RANDOM NUMBERS USED = 3003
AVERAGE NUMBER OF UNITS IN SYS. = 2,27427247E+400

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =
1.20783544E+83

AVERAGE NUMBER OF ARRIVALS PER HR = 2,826238150E+00

228

---------




Com e am am

i e m e

...............

.......

RANDOM NUMBER GENERATOR SEED 2.71704000E+03

AEAN INTERARRIVAL TIME = 3,33333333E-41

MEAN SERVICE TIME = 2.50000000E-01

PROPORTION OF TIME DOCK CREW IS BUSY = 7.,24128190E-01
JAAXIMUM LENGTH OF WAITING LINE = 13

AVERAGE TIME TO TRANJ3IT SYSTEM = 7.535582¢8E-41

PROPORTION OF TRUCKS TAKING FOUR OR MORE HOURS =

4.99333333E+40
SIMULATION RUN LENGTH =
NUMBER OF TRUCKS UNLOADED =

NUMBER OF RANDOM NUMBERS USED =

AVERAGE NUMBER OF JNITS IN SYS, =

5.21137993E+82

HOURS
15349
30190

2.16910752E+040

TOTAL NUMBER OF TRUCK HOURS IN THE SYSTEM(S) =

1.13333731E+33

AVERAGE NUMBER OF ARRIVALS PER HR

299

---------------------
......................
..........................

e S A" &

= 2.89383895E+00

LI
--------

Aiadicabedl Jiall Jeath SRk Seam euam el Bl e e




IORARCARA SR AN AR A AR A RN AE AR B A A RS AL A AR E RO SO AL A AL M At A A AR A AR A aE

7

APPENDIX KK

OUTPUT LISTING
! LIBRARY MAINTENANCE PROGRAM
ORIGINAL PASCAL VERSION

LA R e e

$ liblist
WOULD YOU LIKE TO INSERT OR DELETE A BOOK OR VIEW THE FILE?
TYPE I OR D OR V: V¥

ANNA KARENINA

TOLSTOY, COUNT LEO
19

YT

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:I

N . an e o ey

TYPE THE NAME OF THE BOOK:
WAR AND PEACE

———

i TYPE THE NAME OF THE AUTHOR:
TOLSTOY, COUNRTLEO

TYPE THE CALL NUMBER OF THE BOOK:
5

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:V

WAR AND PEACE
TOLSTOY, COUNT LEO
5

i ANNA KARENINA
TOLSTOY, COUNT LEO
13

‘o am e an

- g

END OF LIBRARY FILE

1 TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:I
TYPE THE NAME OF THE BOOK:
JOH MAMA
4 TYPE THE NAME OF THE AUTHOR:
JOE DADDY

218




TYPE THE CALL NUMBER OF THE BOOK:
7

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:I

TYPE THE NAME OF THE BOOK:
JOE DADDY

TYPE THE NAME OF THE AUTHOR:
JOE MAMA

TYPE THE CALL NUMBER OF THE BOOK:
15

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:V

WAR AND PEACE
TOLSTOY, COUNT LEO
5

JOE MAMA
JOE DADDY
7
ANNA KARENINA
TOLSTOY, COUNT LEO
1a
JOE DADDY
JOE MAMA
15

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:D

TYPE THE CALL NUMBER OF THE BOOK:149

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:V

WAR AND PEACE
TOLSTOY, COUNT LEO
5

JOE MAMA
JOE DADDY
2
JOE DADDY
JOE MAMA
15

211




'r.'.\ RS St At AR = o A o a0 Mk Sl s ol SAR or ol g o o 2 Lo ety —————y ™~ - -

%
]
J

.

-

END OF LIBRARY FILE

Kb b B dad 4 & A4

TYPE I TO INSERT, D TO DELETE, OR V TO VIEW FILE, OR F TO
FINISH:F

2 b d

LIBRARY FILE IS NOW UPDATED

:
A
% a

212

Py

Py

oy .




oy

e e

M e L o

-

e

..... e e S N T W O o Oy

APPENDIX LL

OUTPUT LISTING
LIBRARY MAINTENANCE PROGRAM
ADA LINE-BY-LINE TRANSLATION
VADS COMPILER RELEASE V04.06

3 lib
WOULD YOU LIKE TO INSERT OR DELETE A BOOKRK OR VIEW THE FILE?
TYPE I OR D OR V: V
ANNA KARENINA
TOLSTOY, COUNT LEO
14

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: I

TYPE THE NAME OF THE BOOK:
NAR AND PEACE

TYPE THE NAME OF THE AUTHOR:
TOLSTOY, COUNT LEO

TYPE THE CALLNO OF THE BOOK:
5

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: V

AAR AND PEACE

TOLSTOY, COUNT LEO
5

ANNA KARENINA

TOLSTOY, COUNT LEO
13

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: I

TYPE THE NAME OF THE BOOK:
JOE MAMA

213

.....................................

---------------

..............
--------------




B R S I A O O A S (e A AL S S Rash ek Sent i Sadh Sk Sk el il Adl st su Sanh et Jhd Sad

TYPE THE NAME OF THE AUTHOR:
JOE DADDY

TYPE THE CALLNO OF THE BOOK:
7

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: I

TYPE THE NAME OF THE BOOK: )
JOE DADDY

TYPE THE NAME OF THE AUTHOR:
JOE MAMA

TYPE THE CALLNO OF THE BOOK:
15

TYPE I TO INSERT, D TO DELETE, V TO VIEA FILE OR F TO
FINISH: V

WAR AND PEACE
TOLSTOY, COUNT LEO
5
JOE MAMA
JOE DADDY
7
ANNA KARENINA
TOLSTOY, COUNT LEO
10
JOE DADDY
JOE MAMA
15

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: D

TYPE THE CALL NUMBER OF THE BOOK:19d

TYPE I TO INSERT, D O DELETE, V TO VIEWN FILE OR F TO
FINISH: V

WAR AND PEACE
TOLSTOY, COUNT LEO
5
JOE MAMA
JOE DADDY
7
JOE DADDY

214

...................................
- »
...........
............

.....




R I S~ A e LI A Sl Sands are S SLse e M A L ana o M Sl A St A s ot g Lt Bt A Js 8 Y Bee o sus and aee o o i o orecovcanty |

JOE MAMA
15

END OF LIBRARY FILE

TYPE I TO INSERT, D TO DELETE, V TO VIEW FILE OR F TO
FINISH: F

)
’ - LIBRARY FILE IS NOW UPDATED r

%

-




., B T T ET R T WYy TR TR R W vl et A e e o o

APPENDIX MM
OUTPUT LISTING
LIBRARY MAINTENANCE PROGRAM

ADA REDESIGN
VADS COMPILER RELEASE Vd34.06

3 lib_main

LIBRARY MAINTENANCE PROGRAM

Anat do you want to do?

'l' = insert a book

'D' = delete a book

'P' = print library list
'Q' = quit

12 ANNA KARENINA

what do you want to do?

'I' = insert a book

'D' = delete a book

'P' = print library list
'Q' = quit

I

Znter book title
NAR AND PEACE

Enter author name
TOLSTOY, COUNT LEO

Enter call number
5

What do you want to do?
'I' = insert a book
‘D' = delete a book
'P' = print library list
'Q' = quit

5 WAR AND PEACE

216

by TOLSTOY, COUNT LEO

by TOLSTOY, COUNT LEO




oty J

!
‘

1@ ANNA KARENINA

What do you want to do?

'I' = insert a book

'p' = delete a book

'pP' = print library list
Q' = quit

I

Enter book title
JOE MAMA

Enter author name
JOE DADDY

Enter call number
7

What do you want to do?

'I' = insert a book

'D' = delete a book

'P' = print library list
'Q' = quit

I

Enter book title
JOE DADDY

Enter autnor name
JOE MAMA

Enter call number
15

what do you want to do?
'I' = insert a book
'D' = delete a book
‘P' = print library list

'Q' = quit
P
5 WAR AND PEACE
7 JOE MAMA
1J ANNA KARENINA
15 JOE DADDY

What do you want to do?
'I' = insert a book
‘D' = delete a book
'p' = print library list
'Q' = quit
D

by TOLSTOY, COUNT LEO

by TOLSTOY, COUNT LEO
by JOE DADDY
by TOLSTOY, COUNT LEO
by JOE MAMA

Enter call number of book to be deleted.

217




T f’f‘ LS SN e e

W TR vy vy Wy

19

Wwhat do you want to do?

'I1' = insert a book

'D' = delete a book

'P' = print library list
'Q' = quit

5 WAR AND PEACE
7 JOE MAMA
5

1 JOE DADDY

Wwhat do you want to do?

'I' = insert a book

'D' = delete a book

'P' = print library list
'Q' = quit

2
%

218

T T D T o oy

by TOLSTOY, COUNT LEO
by JOE DADDY
by JOE MAMA




I A e S I I A A U S i e et ek eap fer i L h .

E BIBLIOGRAPHY

1. Banks, Jerry and John 5. Carson II. Discret2~ivaac
System Simulation. Englewood Cliffs NJ: Prentice-

! Hall Iac., 1934.

I 2. Booch, Grady. Software Engineering with Ada. Menlo

t Park: The Benjamin/Zamainss Publisning Company, 1983.

3. 37043, William J. "Pentagon Orders End to Computer
Babel,™ Scienc2, 211: 31-33 (2 January 1931).

Namne  _a s aaa aay o

4. Coar, David. "Pascal, Ada, and Modula-2," Byte, 9: r
215-232 (August 1934).

5. Crafts, Ralph E. "Ada for Business and Other XNon-DoD
Applications,"” Proceedings of the Annual Zoanfev=-nc: on Ada

(Tradzmark) Technology (2nd) Held at Hampton VA, 74-73 (27-

23 darch 1984) (AD-POO3 425).

TP

3. Dalosta, Robert. ™Ada: An Indeptih Look," Defense
Science and Electronics, 3: 33-73 (Marcn 1984).

k 7. Department of Defense. Military Standard Ada
- Programming Languagae. Washington DC ANSI/MIL-STD-1815A
(January 19383).

, 3. Enrenfried, D.H. Feasibility Assessmant of Jovial to
Ada Translation. Tachnical Paper, Alr Force Wright
' Aeronautical Labs Wright-Patterson AFB Od. August 1933 (AD-
{ Al34 357).
9. Zmory, William C. Business Research Metnhnods. Homewood

IL: Richard D. Irwin Inc., 13434.

1. Fawcette, James E "Ada Go2s to Work," Defense h
Zlectronics, 14: 60-31 (July 1982).

11, Fisher, David A. "DoD's Common Programming Language
effore," Computar, 3: 24-33 (March 1373).

12, Fonash, Peter. "Ada - Program Overview," Signal, 37: k
27-31 (July 1983).

13, ----- . "Parlez-Vous 'Ada'?" Program Manager, 12: 5-
13 (July-August 1983).

14, LeBlanc, Richard J. and John L. Goode. "Ada and
52ftsare Development: A New Concept in Language Design,"
Conputer, 15: 75-32 (May 1983).

219




MW R WR W YRy - V. W .'~"_v-"r-:v'?r_f W e . I it y y - . - . - P—r— T L S o
|~

15, Miller, Alan R. FORTRAN Programs for Scientists and
Eaginears. B3ark:ley CA: Sybex Inc., 1982.

16. Pyle, I.C. The Ada Program Language. Englewood Cliffs
NJ: Prentice Hall International, 1931.

17. Schmitz, Gregory #. "Can Ada Lower the Cost of
Software in C3I Systems?" Signal, 37: 75-77 (August 1983).

18, Sherman, Bruce. "Design of the First Ada KAPSE
Interface," Defense Electronics, 15: 141-149 (April 1984).

19, U.S. Department of the Air Force, Directorate of
Integration and Technology. Data Project Directive HAF-P83-
Pd6, Washington DT (23 December 1933).

2), Wylie, George T. Lt Cmdr and Watt, Thomas R. Lt,
Utilization of Ada as a Program Desxgn Language. MS thesis,
Naval Post Graduate School, Monterzy CA, Jun 1983 (AD-Al32
244) .

ﬁ 21, Wichman, B.A. "A Comparison of Pascal and Ada," The
Computer Journal, 25: 248-252 (May 1982).

22, 7Zaks, Rodnay. Introduction To Pascal Including UCSD
Pascal (Second Edition). Berkeley CA: Sybex iInc., 1981.

220

............... X . 5 NEN N : _. e _., RN -_. -'. -‘-j
; e e T e e T NN
oo Nt T T e e T e e T e gt e e e L.&_J_-A_.P et Ty LT,




LAl e e o

. % 0w T T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

y N T R W Wy wWhygtw aw -
DR N A AN S Sl I AN AN S SV R i S A i Ul Rer e e 8 »-*_-Vv"'“""‘*—1

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION

CNCIASSIETED

P O Y N

1b, RESTRICTIVE MARKINGS

23. SECURITY CLASSIFICATION AUTHORITY

Eb. DECLASSIFICATION/DOWNGRADING SCHEDULE

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited.

a e a.a o

4. PERFCAMING SRGANIZATION REPORT NUMBERI(S)

AFIT/GLM/L&M/ 855-62

5. MONITORING ORGANIZATION REPORT NUMBER(S)

b. OFFICE SYMBOL
11f applicable)

AFIT/LSM

6a. NAME OF PERFOAMING ORGANIZATION
Schocl of Systems
anc Logistics

7a. NAME OF MONITORING ORGANIZATION

P

6c. ADORESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433-6583

7b. ADDRESS (City, State and ZIP Code)

8b. OFFICE SYMBOL
(1f applicable)

8s. NAME OF FUNDING/SPONSORING
ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

dendecfontondeck ok SN S

8c. ADDRESS City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

11. TITLE Inciude Securtty Classification)

See Box 19.

TASK
NO.

WORK UNIT
NO.

PROGRAM PROJECT
ELEMENT NO. NO.

12. PERSONAL AUTHORI(S)

Larry D. Cavitt, Capt, USAF

Anthony A. Panek, Capt, USAF

13a. TYPE OF REPORT
MS Thesis

13b, TIME COVERED
FROM TO

14. DATE OF REPORT (Yr, Mo., Day/

1985 September

15. PAGE COUNT

234

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GRQOUP SUB. GR.
09 02 Ada, Programming Language, Software Readability
_Software Maintenance, Simulation

19. ABSTRACT 'Continue on reverse if necessary and identify by block number)

Title: AN ASSESSMENT COF ADA'S SUITABILITY IN GENERAL
PURPCSE PROGRAMMING APPLICATIONS

Patricia K. Lawlis, Captain, USAF
Instructor in Mathematics and Computer Science
mm'nmxuqf

ved for
Lgsﬁ. WCLAVER . ° “w g

Dean tor Recearch and Prolessional Developmesnt
Air Force lastitute of Tecinoiegy (G-
Wright-Pattersea AFB OH 45433

Thesis Chairman:

relecael

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22b. TELEPHONE NUMBER
tInclude Area Code)

Patricia K. Lawlis, Captain, USAF 513-255-3098

EDITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSIFIED/UNLIMITED 3 SaME as RPT. _ oTic usens O

22c. OFFICE SYMBOL

22s. NAME OF RESPONSIBLE INDIVIDUAL

AFIT/ENC
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE




T e T T T L B R R R Ry p— v
. B . L B el BEaRe i A Sl AN A AN A GP A S e i A A0k S Al 2an sene 4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

—

S o o ey

v

The Ada programming language is the result of a multiyear effort under the
sponsorship of the Department of Defense (DaD) to cbtain the benifits of a
single DoD-~wicde language faor use in embedded camputer systems. The

- language was develcped to reduce or eliminate many of the.serices and-cestly
problems asscciated with the development and maintenance of software for
empbedded systems. This researeh assesses Ada's suitability in simple,
non-embedded applications, specifically, numerical camputation, simulation,
and file processing. FCRTRAN and Pascal programs in these applications
were translated into Ada. Coamparisons were made between the ariginals
ané the translations with regard to lines of source code, transportability,
maintainability, readability, execution time, and any other finding
relevant to the study. The study revealed that while further research is
reeded, Ada is a powerful programming language suitable for use in these
ncn-emedded applications.




., BTRTWYS T WY W T wywy T - ~ ) i v T <Y v DAACEACELENA AN AR ML S St At ates ulh abd odh SER Sl LR SR S L o o e
LR R i . B - . . . [ L L. . . N - — - e S

e . e P

END

—

—

——— e —




